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NANOSTRUCTURES 

❑ Useful applications in medicine, chemistry and material science

❑ Often with nanostructures one needs to work with the Schrödinger equation

  ∇ ⋅
−ℏ2

2𝑚∗ Ԧ𝑟
∇𝜓 Ԧ𝑟 + 𝑈 Ԧ𝑟 𝜓 Ԧ𝑟 = 𝐸𝜓( Ԧ𝑟) 

❑ Large-scale multi-dimensional simulations of the Schrödinger equation often require 

immense computational power and time when using direct numeric simulations (DNS)

❑ Like many other special dependent simulations, a large number of DoF are 

needed, especially in regions where high resolution is needed 
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ESSENTIALS OF COMPACT MODELING

❑ Employ projection or Mathematical Transformation to reduce the DoF

❑ Commonly used projections:

❑ Fourier Series: 𝑓 𝑥 = σ−∞
∞ 𝑎𝑛𝑒𝑗𝑛𝑘𝑥 : Periodic  Harmonic Expansion

❑ Legendre Polynomials: 𝑓 𝑥 = σℓ=0
𝑛 𝑎ℓ𝑃ℓ(𝑥) : Spherical Harmonic Expansion 

❑ Bessel Functions: 𝑓 𝑥 = σ𝑛=0
𝑀 𝑎𝑛𝐽𝑛 𝑥   : Cylindric Harmonic Expansion

❑ Instead of assuming a basis, a learning algorithm can extract the modes:

❑ Examples:

❑ PCA: Principal component analysis

❑ SVD: Singular value decomposition
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❑ Spherical Harmonic

https://www.theochem.ru.nl/~pwormer/Kno

wino/knowino.org/wiki/Spherical_harmonics

.html 



PROPER ORTHOGONAL DECOMPOSITION OF THE SCHRÖDINGER EQN.
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❑ To reduce DoF of the Schrödinger equation one will project it onto modes found via POD

𝜓 Ԧ𝑟 = ෍

𝑖=1

𝑀

𝑎𝑖𝜂𝑖( Ԧ𝑟)

❑ POD modes 𝜂( Ԧ𝑟) are found such that it maximizes its mean square inner product with the solution
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❑ Employing Calculus of variations techniques, the maximization process results in an eigenvalue 
problem of the 2-point correlation matrix of the data

න
Ω′

𝜓 Ԧ𝑟 ⊗ 𝜓 𝑟′ 𝜂 𝑟′ 𝑑Ω′ = 𝜆𝜂( Ԧ𝑟)

❑ Solved modes minimize the least square error with the smallest number of basis functions



QUANTUM POD METHODOLOGY FOR SINGLE ELEMENT

❑ Data collected via applying electric fields or external potentials to underlining nanostructure

❑ For each sample (applied electric field) the Schrödinger Eqn. is solved using DNS

❑ WFs of the first few N QS are collected for 𝑁𝑠 electric fields

5

24 nm

24 nm

𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎 = Ψ1, Ψ2, … , Ψ𝑁𝑆
; Ψi = {𝜓1( Ԧ𝑟), 𝜓2( Ԧ𝑟), … , 𝜓𝑁 ( Ԧ𝑟)}

Ψi ∶ Set of WF data for Electric field 𝑖



SINGLE ELEMENT PROJECTION ONTO POD MODES

Galerkin Projection of the Schrodinger equation onto the  ith POD mode:
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Interior kinetic energy matrix Boundary kinetic energy matrix Potential energy matrix 6
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Schrodinger equation formed via a linear combination of POD Modes:
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Forms Hamiltonian Equation in POD Space: 𝑯𝜂 Ԧ𝑎 = 𝑻𝜂 + 𝑩𝜂 + 𝑼𝜂 Ԧ𝑎 = E Ԧ𝑎

Unlike PCA/SVD, the POD simulation methodology involves a second projection 

incorporating the governing equation into the model 



QUANTUM ELEMENT METHOD (QEM)

❑ To form the POD modes, DNS data is 
required
❑ Large structures might make 

gathering this training data 
prohibitive due to large 
simulation times.
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❑Solution: QEM

❑Incorporate domain decomposition in 

which trained elements can be stitched 

using the Discontinuous Galerkin 

Method

❑Aligning with the engineering 

paradigm of building Blocks the QEM 

offers a  cost-effective approach to 

simulating large nanostructures

Train Elements

DNS to 
collect data

Application

Method of 
Snapshots
to generate 
POD modes

Store POD 
modes for 

each 
element

Assemble 

Nanostructure

Training Structures

Construct 
multi-

element 
POD domain

Perform 
simulation in 
POD space

Post 
processing to 

obtain WF 
solution



SCHRODINGER EQUATION, IN POD SPACE (QEM)

❑ Applying the Discontinuous Galerkin method to the Schrodinger 
equation in POD space the  results in:
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Interior Kinetic 
energy Matrix

Interior Potential 
energy Matrix

𝐵𝑝,𝑝𝑞,𝑖𝑗 = −
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Diagonal Boundary 
Kinetic Energy Matrix

Off-Diagonal Boundary 
Kinetic Energy Matrix

𝜇 penalty parameter allowing control  
preference between continuity of flux vs value



TRAINING AND MODE GENERATION

9

❑ Two 9-element training structures of quantum dots composed of the GaAs/InAs heterostructure are 
for training
❑ 5 electric field applied in each of the two orthogonal directions ranging from -0.35kv/cm and 

+0.35kv/cm are applied to these structures.
❑ For each Electric Field, the WFs of the first 6 QSs are collected.

❑ After Training 

the POD modes, the Method 

of Snapshots

is applied to each element

generating a  unique set 

of Modes for each.



TRAINING ELEMENTS 1AND 2
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Vertical  Training 
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Horizontal Training 

Elements

Vertical  Training 

Elements

Horizontal Training 

Elements



TRAINING ELEMENT 3 AND 4
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Vertical  Training 

Elements

Horizontal Training 

Elements

Vertical  Training 

Elements

Horizontal Training 

Elements



TEST STRUCTURE

❑ The POD methodology is applied to the 
training structure on right.

❑ Unlike during training, a two-
component electric field is applied

𝐸 = 25
𝑘𝑉

𝑐𝑚
ො𝑥 − 15

𝑘𝑉

𝑐𝑚
ො𝑦
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Test Nanostructure

Training Nanostructure



ADEQUACY OF TRAINING RELATIVE TO TEST STRUCTURE 
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Test Nanostructure

Vertical

E1

Horizontal

E1

Vertical 

E2 

Horizontal

E2

✓



✓

✓

Training Elements Test 



ADEQUACY OF TRAINING RELATIVE TO TEST STRUCTURE CONT. 
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Test Nanostructure

Vertical

E3

Horizontal

E3

Vertical

E4

Horizontal

E4

✓

✓





Training Elements Test 



𝜓 RESULTS

❑ Alignment with 
POD and DNS 
solution after 
around 10 modes 
per Element
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DNS 

QEM 

X
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LS ERROR PLOT AND ENERGY ERROR

❑ Energy Percent difference between DNS and POD 
is less than 0.7% for trained states and 0.83% for 
untrained states

16

❑ LS error for trained states is around 
1% or less after including 10 modes 
for trained states.

❑ States 7 and 8 which are not trained 
reach an errors or around 3% and 4% 
respectively after including  20 Modes 
per element.

DNS uses 90601 DoF



CONCLUSION

❑ QEM can greatly reduce the DoF of the problem 
❑  90601 to around 40 DoF 

❑ QEM confirms the engineering paradigm of building blocks
❑ Offers promising value within engineering design 

❑ In general, higher QSs require more POD modes to reach sufficient accuracy 

❑ The QEM can stitch together blocks with incomplete training

❑ Training with single orthogonal component electric fields allows simulation of 
nanostructures subjected to two components

❑ Higher untrained QSs can be reasonably predicted via the QEM

❑  For  large Nanostructures, the POD Hamiltonian matrix becomes sparse
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