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Partial Differential Equations

Questions: Goal:
. : 5 - Formulate PDE:

What Is a PDE: convert dynamical process into data or equations
- Examples of Important « Solve PDE:

PDEs. find unknown function that satisfies PDE

e L. Study solutions:
- Classification of PDEs. oroperties of solutions

™ CCture on PDE I

What is PDE? Pg3
Classification of PDEs Pg 4
Classification of linear 2" order PDE: Elliptic, parabolic, hyperbolic Pg5
Three fundamental examples of PDE: heat, wave, Laplace Pg6
Common but challenging PDEs: diffusion equation, ..., Schrodinger equations, ... Pg7
How to solve PDEs: analytically, numerically, combination of both Pg8
Laplace equation: 2D, 3D Pg9
Heat equation: 1D, 3D Pg 10
Wave equation: 1D, 3D Pg 11
Transport equation: 1D Pg 12
Well-postness: number of BCs and ICs Pg13--14
Types of BCs Pg 15
Two examples of well-post Laplace equation Pg 16
Two examples of well-post wave equation Pg 17
Well-post heat equation Pg 18
1D Heat equation ----- solutions Pg 19
Represent solutions Pg 20
2D Heat equations with solutions Pg 21

2D Laplace equations with solutions Pg 22



Partial Ditferential Equations

A partial differential equation (PDE) is an equation that involves an
unknown function and its partial derivatives.

O PDE involves two or more independent variables: x, vy, z, t and

dependent variables: u, v
_ U = 0%u(x,t) " = 0%u(x,t)
O Subscripts: partial derivatives: ™ = ax2 ~ ™™ axat

O PDEs are used to model many systems in many different fields of
science and engineering.

O Important examples:

B Laplace equation, Heat equation, Wave equation




Linear Second order PDEs are important sets of equations that are used to
model many systems in many different fields of science and engineering.

Classifications of PDEs

Classification is important because: Each category relates to specific
engineering problems. Different approaches are used to solve these
categories.

O

Order: 1st, 2nd , 4th
2Uyy + 2uyuy + 3 \/u; = 0.---2"d order

Number of independent variables: u(x,y,t)

Linearity: linear if it is linear in the unknown functions and its
derivatives

Linear: 2u,, + u,; + 3uy + 4u, + cos(2t) =0

Nonlinear: 2uy, + 2u,u; + 3 u; = 0.

Homogeneity
Coefficient type: constant, variable

Linear 2" order PDEs: parabolic, hyperbolic and elliptic



Applications:
. . ) Heat conduction
Linear 2nd Order PDEs Classification  Fluid motion (Navier Stokes equations)
Schrodinger’s equations
General relativity (EFE)

O A 2nd order linear PDE with 2 independent variables can be written
in the form
Auyy + Buyy + Cuyy, + D =0,
where 4, B, C are functions of x and y, D is a function of x,y,u, u,, u,.

O This kind of equation can be classified based on values of B? —
4AC as follows:

Condition —4AC <0 —4AC =0 —4AC >0

Example Laplace Egn Heat Egn Wave Egn




Three fundamental examples of PDE and solutions

SN

0 Heat equation (parabolic): Uy = Uy,

o Solution: u = éxz +t

o Challenge: can you find another solution? u = e®*bt /\

o Fourier, 1800's
= Heat conduction

o Wave equation (hyperbolic): ;= u,,
s d'Alembert, 1740’s, vibration of strings

o Laplace equation (elliptic): u,, +u,, =0
= Laplace, 1780’s,

= gravitation mechanical equilibrium,
= thermal equilibrium

bﬁ\
AN

Lap\ace‘slequation on an annulus (inner radius » = 2 and
outer radius R = 4) with Dirichlet boundary conditions 6
u(r=2) = 0 and u(R=4) = 4 sin(5 )


https://en.wikipedia.org/wiki/Standing_wave
https://en.wikipedia.org/wiki/Fundamental_frequency
https://en.wikipedia.org/wiki/Overtone
https://en.wikipedia.org/wiki/Harmonic_series_(music)

Common but Challenging PDEs

o Diffusion equation
V-DVC+5=0
o Solid-Mechanics
V-(puul)=-VP+V-1t+pg
o Navier-Stokes
d(pii)
ot
o Schrodinger

+V-(pu@u)+VP = ,u|72u+ V(V-u)+pg

v [— + U@y = E ()

o Dynamics Electromagnetic wave equation
ued?E(#t) ucdE(# t) Sz N
352 + 5 VAE(r,t) =
o Boltzmann transport equation

af qE of

uoj(7,t)
ot




How to solve PDEs?

Analytlcally
Method of characteristic
« Separation of variables

« Fourier analysis----sin(x), cos(x), Bessel’s function, Legendre, ..

« Eigenfunction expansion
 Problems:
« Cannot deal with complicated geometry
« May not converge with finite terms
 Hard to deal with nonlinear
Numerically:
Finite difference method (FDM)
Finite element method (FEM)
Finite volume method
Reduce order method, meshless method, etc
Combination of analytical and numerical methods




Laplace Equation

. 0%u(xyz) | %u(xyz) , 0%u(xyz) _
3D: S22 + 952 + 5z 0

5D azu(x, V) N 52u(x,y) _0
ox* oy*

O Used to describe the steady state distribution of heat in a body, or the
steady state distribution of electrical charge in a body.

O0A=1,B=0,C=1- B?—4AC < 0 - Elliptic equation.

O Possible solution: u(x,y) = e* sin(y)

O Temperature is a function of the position (x and y) When no heat source
IS available in the Poisson equation

9°T(x,y) , 0°T(xy) _ _
oz T o2 Y, flxy)=0




Heat Equation

au(x y,z t) _ ( 2u d%u )
;)’\72 ;)’72
ot 9 BE=
o, TED _ PTG
ot 0x? C @
O*u(x,t)  Ou(x,t) 3 ]
1D ““ar )

OA=0a,B=0,C=0-B?—-4AC = 0 - parabolic

OThe function u(x, y,z,t) is used to represent the temperature at time ¢
in a physical body at a point with coordinates (x, y, z)

O T(x,t) is used to represent the temperature at time ¢t at the point x of
the thin rod.

O a is the thermal diffusivity. It is sufficient to consider the case a = 1.
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Wave Equation

22%u(x,y,zt 0%2u = 9%u . 9%u
3p; ZMEXED _ 2 +— +—
ot>2 0x2  0dy? = 0z

D 22 *u(x, 1) B o*u(x, 1) _0

ox? or?

O A=¢*>>0,B=0,C=-1- B?—4AC > 0 —hyperbolic

O The function u(x,y, z,t) is used to represent the displacement at
time t of a particle whose position at rest is (x,y, z).

O The constant c represents the propagation speed of the wave.

1



Other simple but important PDEs: Transport equation

O Transport equation: u; +cu, =0

m Other forms: aa—f+ V-j =0, where

V -is divergence, p is the amount of the quantity q per
unit volume per, tis time, o is the generation of g per
unit volume per unit time

= describe how water wave transports

= "Relatives’
volume continuity equation
the Navier—Stokes equations
the advection equation
in physics, Gauss's law of the electric field

12




Well-postness?

m A well-posed initial/boundary condition problem has a unique
solution that depends continuously on the initial/boundary
conditions.

o The specification of proper initial conditions (IC) and boundary
conditions (BC) for a PDE is essential in order to have a well-posed
problem.

o And we can never find a numerical solution of a problem that is ill
posed: the computer will show its disgust by “blowing up”.

13




What can make PDEs 1ll post?

o If too many IC/BC are specified, there will be no solution.
o If too few IC/BC are specified, the solution will not be unique.

o If the number of IC/BC is right, but they are specified at the
wrong place or time, the solution will be unique, but it will not
depend smoothly on the IC/BC.

= This means that small errors in the IC/BC will produce huge errors in
the solution.

In any of these cases we have an ill-posed problem.

14



Types of boundary conditions:

Specify one boundary condition on each point of the spatial
boundary:

1. Dirichlet BC: specify the value of the function at the boarders of

a domain
t ()

2. Neumann BC: speficy its normal derivative, e.g., no flux
Neumann BC

du
Pl 0.
3. Mixed Robin BC: e.g. flux depends on the temperature

du
a—C(u—T)

15




Two examples of Laplace equation
with proper boundary conditions in 2D

Boundary condition: given heat How
uy, = glr)aty=nh

Y (Neuman)
h
Rectangular Plate
Boundary condition: | partial differential equation: | Boundary condition:
meets ice water steady heat conduction given temperature
u=0atz=0 Uzz +Uyy =0forallzandy | u= fly)atz ="/
( Dirichlet) (the Laplace equation) (Dirichlet)

Boundary condition: insulated ¢
uy =0aty =10

(Neuman) ¥ A
T=1.0
1.0
a7
. 0 PT=0 T=00
- 16
0.0 daT 10 «x




Two examples of well-post wave equations:

(the wave equation)

String
Boundary condition: u Boundary condition:
zero deflection zero detlection
" |
|
partial differential equation: |
u=0atrT=10 simple wave propagation | u=0atx ="
( Dirichlet ) Uy = @y, for all r and t (Dirichlet)
|
|
|

. . i =z
[nitial conditions:
given initial detection given initial velocity
u= flz)att =10 u, = glx)at t =0

Figure 1.3: An example wave equation problem.

a)c>0 b) c<0
t t
du du
/ —=—c—,x>0,t>0
at 0x
L AN BC
BC: needed!
u(0,t)=g(t) \
/ ers:ekalnay:Documents: AOS{614-DOES PPT(Ngsses.c_ 1PDEsWellPosed-
X d on September 26, 2007 8:3 AN

IC:
u(x,0)=f(x)




Well post PDEs: an example of heat equation
with proper boundary conditions and 1initial conditions

Boundary condition:
given heat Hux

Boundary condition:
given temperature

Bar

partial differential equation:
unsteady heat conduction %, = go(f) stz =1¢

(Neumann)

u=g(t)atz=0
(Dirichlet)

u; = Ku,, for all x and ¢

(the heat equation)

Initial condition: €
given initial temperature

n=flr)astt=10

Figure 1.2: An example heat equation problem.

18




1D Heat Equation

To uniquely specify a solution to the PDE, a set of
boundary conditions are needed. Both regular and
irregular boundaries are possible.

ice Ice

»
»

X
Thin metal rod insulated
everywhere except at the

edges. At t =0 the rod is
placed in ice

0%T(x,t) 0T (x,t) B
0x? ot
T0,t)=T(1,t)=0
T(x,0) =sin(m

Temperature Temperature at

different x at t=0

Position x

Temperature at
different x at t=h

19



Representing the Solution of a PDE
(Two Independent Variables x and )

o Three main ways to represent the solution

A A T(xlitl) A

I I -I

I I I

___________________ I "1 1
{ s .1 T=35

e | | -:

X1
Different curves are Three dimensional plot The axis represent the
used for different of the function T(x, t) independent variables.
values of one of the The value of the

independent function is displayed at

variable grid points

20




dT(x,y,t) 1 (62T(x, y,t) N 0%T(x,y,t)

. P 32 52 ),O<x,y<1,t>0
2D Heat Equation ' * Y

T(x=0,y,t) =400, 0<y<10,t>0
T(x =10,y,t) = 800, 0<y<10,t>0
T(x,y =10,t) = 600, 0<x<10,t>0
T(x,y =0,t) =900, 0<x<10,t>0
T(x,y,t =0) =300, N = eeen AN

20 Heat Conduction in Transient State.

T(x,y =10,t) = 600

%0

T(x,y,t =0) =300

007 = @A0=x)1

008 = (‘401 =x).1
|

T(x,y =0,t) =900

2D Heat Conduction at Final Time

900

800

2D Heat Conduction in Transient State - Implicit method using Gauss Seidel method.
Number of iterations =75

700

600

500

400




0%T(x,y,t) N 0%T(x,y,t)
" 0x? dy?
2D Laplace Equation = 0.9) =200, 0=y <10
T(x=10,y) =800, 0<y <10
T(x,y = 10) = 600, 0<x <10
T(x,y =0) =900, 0<x<10

=0, 0<x,y<10

T(x,y =10) = 600

DOy = (L0 = %)L

| 008= (401 =)L |

Plot for Gauss Seidel method
Number of iterations = 111

T(x,y =0,t) =900

900

850

800

L onn
ouuy

1750

1700

1650

Y Axis

1600

550

500

450

400

X Axis




_ Ure = % (Uyy + Uyy), 0 < x,y < 1,t >0
21 Wave Equation BC: u(0,y,t) = u(1,y,t) = u(x,0,¢) = u(x,1,t) = 0,t > 0
IC: T(x,y,t =0) = sin(pnx) sin(qmy), 0<x,y <1

T(x,1,t) =0

Absolute errorat t = 1.00

T(x,y,0) = sin(pmx) sin(qmy)

0=047)L

Tx,0)=0 |

2D wave equation att = 1.00

u(x,y,t = 1.00)

0.6

0.2 0.4
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_ Ure = % (Uyy + Uyy), 0 < x,y < 1,t >0
21 Wave Equation BC: u(0,y,t) = u(1,y,t) = u(x,0,¢) = u(x,1,t) = 0,t > 0
IC: T(x,y,t =0) = sin(pnx) sin(qmy), 0<x,y <1

T(x,1,t) =0

Absolute errorat t = 1.00

T(x,y,0) = sin(pmx) sin(qmy)

0=047)L

Tx,0)=0 |

2D wave equation att = 1.00

u(x,y,t = 1.00)

0.6

0.2 0.4
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THANK YOU!

GYAO@CLARKSON.EDU
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