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Partial Differential Equations

Questions: 

• What is a PDE?

• Examples of Important 
PDEs.

• Classification of PDEs.

Goal: 
• Formulate PDE: 

convert dynamical process into data or equations

• Solve PDE: 
find unknown function that satisfies PDE

• Study solutions: 
properties of solutions
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Partial Differential Equations

A partial differential equation (PDE) is an equation that involves an 

unknown function and its partial derivatives. 

Notation: 

 PDE involves two or more independent variables: 𝑥, 𝑦, 𝑧, 𝑡 and 

dependent variables: 𝑢, 𝑣

 Subscripts: partial derivatives: 

 PDEs are used to model many systems in many different fields of 

science and engineering. 

 Important examples: 

◼ Laplace equation, Heat equation, Wave equation 

𝑢𝑥𝑥 =
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
, 𝑢𝑥𝑡 =

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥𝜕𝑡



Classifications of PDEs

 Order: 1st , 2nd , 4th

2𝑢𝑥𝑥 + 2𝑢𝑥𝑡𝑢𝑡 + 3 𝑢𝑡 = 0. ---2nd order

 Number of independent variables: 𝑢(𝑥, 𝑦, 𝑡)

 Linearity: linear if it is linear in the unknown functions and its 
derivatives

Linear: 2𝑢𝑥𝑥 + 𝑢𝑥𝑡 + 3𝑢𝑡𝑡 + 4𝑢𝑥 + cos 2𝑡 = 0

Nonlinear: 2𝑢𝑥𝑥 + 2𝑢𝑥𝑡𝑢𝑡 + 3 𝑢𝑡 = 0.

 Homogeneity 

 Coefficient type: constant, variable 

 Linear 2nd order PDEs: parabolic, hyperbolic and elliptic 
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Linear Second order PDEs are important sets of equations that are used to 
model many systems in many different fields of science and engineering.

Classification is important because: Each category relates to specific 
engineering problems. Different approaches are used to solve these 

categories.



 A 2nd order linear PDE with 2 independent variables can be written 
in the form 

𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷 = 0,

where 𝐴, 𝐵, 𝐶 are functions of 𝑥 and 𝑦, 𝐷 is a function of 𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦.

 This kind of equation can be classified based on values of 𝐵2 −
4𝐴𝐶 as follows:
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Linear 2nd Order PDEs Classification

Applications: 
Heat conduction 
Fluid motion (Navier Stokes equations)
Schrodinger’s equations
General relativity (EFE)

Type Elliptic Parabolic Hyperbolic

Condition 𝐵2 − 4𝐴𝐶 < 0 𝐵2 − 4𝐴𝐶 = 0 𝐵2 − 4𝐴𝐶 > 0

Example Laplace Eqn Heat Eqn Wave Eqn

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦



Three fundamental examples of PDE and solutions


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Vibration, standing waves in a string. The fundamental and the first 

5 overtones in the harmonic series.

https://en.wikipedia.org/wiki/Standing_wave
https://en.wikipedia.org/wiki/Fundamental_frequency
https://en.wikipedia.org/wiki/Overtone
https://en.wikipedia.org/wiki/Harmonic_series_(music)


Common but Challenging PDEs

 Diffusion equation
𝛻 ⋅ 𝐷𝛻𝐶 + 𝑆 = 0

 Solid-Mechanics
𝛻 ⋅ 𝜌𝑢𝑢𝑇 = −𝛻𝑃 + 𝛻 ⋅ 𝜏 + 𝜌𝑔

 Navier-Stokes
𝜕 𝜌𝑢

𝜕𝑡
+ 𝛻 ⋅ 𝜌𝑢 ⊗ 𝑢 + 𝛻𝑃 = 𝜇𝛻2𝑢 +

𝜇
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𝛻 𝛻 ⋅ 𝑢 + 𝜌𝑔

 Schrodinger

𝛻 ⋅ −
ℎ2

2𝑚∗ 𝛻𝜓 Ԧ𝑟 + 𝑈 Ԧ𝑟 𝜓 Ԧ𝑟 = 𝐸 𝜓(Ԧ𝑟)

 Dynamics Electromagnetic wave equation

𝜇𝜖𝜕2𝐸 Ԧ𝑟, 𝑡

𝜕𝑡2
+
𝜇𝜎𝜕𝐸 Ԧ𝑟, 𝑡

𝜕𝑡
− 𝛻2𝐸 Ԧ𝑟, 𝑡 = −

𝜇𝜕Ԧ𝑗 Ԧ𝑟, 𝑡

𝜕𝑡
 Boltzmann transport equation

𝜕𝑓

𝜕𝑡
+ 𝐯 ⋅ 𝛻𝑓 +

𝑞𝐄

𝐡
⋅ 𝛻𝑘 𝑓 =

𝜕𝑓

𝜕𝑡
𝐶
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Analytically: 
• Method of characteristic
• Separation of variables
• Fourier analysis----sin 𝑥 , cos 𝑥 , Bessel’s function, Legendre, ..
• Eigenfunction expansion
• Problems:

• Cannot deal with complicated geometry
• May not converge with finite terms
• Hard to deal with nonlinear

Numerically: 
Finite difference method (FDM)
Finite element method (FEM)
Finite volume method
Reduce order method, meshless method, etc

Combination of analytical and numerical methods

How to solve PDEs?
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Laplace Equation

 Used to describe the steady state distribution of heat in a body,  or the 

steady state distribution of electrical charge in a body.

 𝐴 = 1, 𝐵 = 0, 𝐶 = 1 → 𝐵2 − 4𝐴𝐶 < 0 → Elliptic equation.

 Possible solution: 𝑢 𝑥, 𝑦 = 𝑒𝑥 sin 𝑦

 Temperature is a function of the position (𝑥 and 𝑦) When no heat source 

is available in the Poisson equation

3D: 
𝜕2𝑢(𝑥,𝑦,𝑧)

𝜕𝑥2
+

𝜕2𝑢(𝑥,𝑦,𝑧)

𝜕𝑦2
+

𝜕2𝑢(𝑥,𝑦,𝑧)

𝜕𝑧2
= 0

2D: 

𝜕2𝑇(𝑥,𝑦)

𝜕𝑥2
+

𝜕2𝑇(𝑥,𝑦)

𝜕𝑦2
= 𝑓(𝑥, 𝑦), 𝑓(𝑥, 𝑦) = 0
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Heat Equation

3𝐷:
𝜕𝑢(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2

1D: 

1D 

𝐴 = 𝛼, 𝐵 = 0, 𝐶 = 0 → 𝐵2 − 4𝐴𝐶 = 0 → parabolic

The function 𝑢(𝑥, 𝑦, 𝑧, 𝑡) is used to represent the temperature at time 𝑡
in a physical body at a point  with coordinates (𝑥, 𝑦, 𝑧)

 𝑇(𝑥, 𝑡) is used to represent the temperature at time 𝑡 at  the  point 𝑥 of 

the thin rod.

 𝜶 is the thermal diffusivity. It is sufficient to consider the case 𝛼 = 1.

𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
=
𝜕2𝑇(𝑥, 𝑡)

𝜕𝑥2
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Wave Equation

3D: 
𝜕2𝑢(𝑥,𝑦,𝑧,𝑡)

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2

1D: 

 𝐴 = 𝑐2 > 0, 𝐵 = 0, 𝐶 = −1 → 𝐵2 − 4𝐴𝐶 > 0 →hyperbolic

 The function 𝑢(𝑥, 𝑦, 𝑧, 𝑡) is used to represent the displacement at 

time 𝑡 of a particle whose position at rest is (𝑥, 𝑦, 𝑧).

 The constant c represents the propagation speed of the wave.



Other simple but important PDEs: Transport equation 


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Well-postness?

 A well-posed initial/boundary condition problem has a unique 
solution that depends continuously on the initial/boundary 
conditions.

 The specification of proper initial conditions (IC) and boundary 
conditions (BC) for a PDE is essential in order to have a well-posed 
problem.

 And we can never find a numerical solution of a problem that is ill 
posed: the computer will show its disgust by “blowing up”.
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What can make PDEs ill post?

 If too many IC/BC are specified, there will be no solution.

 If too few IC/BC are specified, the solution will not be unique. 

 If the number of IC/BC is right, but they are specified at the 
wrong place or time, the solution will be unique, but it will not 
depend smoothly on the IC/BC. 

◼ This means that small errors in the IC/BC will produce huge errors in 
the solution. 

In any of these cases we have an ill-posed problem.
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Types of boundary conditions: 
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Specify one boundary condition on each point of the spatial 
boundary:

1. Dirichlet BC: specify the value of the function at the boarders of 
a domain

2. Neumann BC: speficy its normal derivative, e.g., no flux 
Neumann BC

3. Mixed Robin BC: e.g. flux depends on the temperature
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Two examples of  Laplace equation 

with proper boundary conditions in 2D 



Two examples of well-post wave equations:
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Well post PDEs: an example of heat equation 

with proper boundary conditions and initial conditions
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1D Heat Equation 

𝜕2𝑇(𝑥, 𝑡)

𝜕𝑥2
−
𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
= 0

𝑇(0, 𝑡) = 𝑇(1, 𝑡) = 0
𝑇(𝑥, 0) = sin( 𝜋𝑥)

x

ice ice
Temperature at 
different x at t=0

Temperature at 
different x at t=h

Temperature

Position  x

Thin metal rod  insulated 
everywhere except at the 
edges. At  t =0 the rod is 
placed in ice 

Different curve is used 
for each value of t

To uniquely specify a solution to the PDE, a set of 
boundary conditions are needed. Both regular and 
irregular boundaries are possible.

region of 
interest
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Representing the Solution of a PDE

(Two Independent Variables 𝑥 and 𝑡)

 Three main ways to represent the solution

Different curves are 
used for different 
values of one of the 
independent 
variable

x1

t1

𝑇(𝑥1, 𝑡1)

Three dimensional plot 
of the function 𝑇(𝑥, 𝑡)

The axis represent the 
independent variables. 
The value of the 
function is displayed at 
grid points

T=3.5

T=5.2



2D Heat Equation
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𝑇
𝑥
=
1
0
,𝑦
,𝑡

=
8
0
0

𝑇
𝑥
=
0
,𝑦
,𝑡

=
4
0
0

𝑇 𝑥, 𝑦 = 0, 𝑡 = 900

𝜕𝑇(𝑥, 𝑦, 𝑡)

𝜕𝑡
= 1.2

𝜕2𝑇 𝑥, 𝑦, 𝑡

𝜕𝑥2
+
𝜕2𝑇 𝑥, 𝑦, 𝑡

𝜕𝑦2
, 0 < 𝑥, 𝑦 < 1, 𝑡 > 0

𝑇 𝑥 = 0, 𝑦, 𝑡 = 400, 0 ≤ 𝑦 ≤ 10, 𝑡 > 0
𝑇 𝑥 = 10, 𝑦, 𝑡 = 800, 0 ≤ 𝑦 ≤ 10, 𝑡 > 0
𝑇 𝑥, 𝑦 = 10, 𝑡 = 600, 0 ≤ 𝑥 ≤ 10, 𝑡 > 0
𝑇 𝑥, 𝑦 = 0, 𝑡 = 900, 0 ≤ 𝑥 ≤ 10, 𝑡 > 0
𝑇 𝑥, 𝑦, 𝑡 = 0 = 300, 0 ≤ 𝑥, 𝑦 ≤ 10

𝑇 𝑥, 𝑦 = 10, 𝑡 = 600

𝑇 𝑥, 𝑦, 𝑡 = 0 = 300



2D Laplace Equation
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𝑇
𝑥
=
1
0
,𝑦

=
8
0
0

𝑇
𝑥
=
0
,𝑦

=
4
0
0

𝑇 𝑥, 𝑦 = 0, 𝑡 = 900

𝜕2𝑇 𝑥, 𝑦, 𝑡

𝜕𝑥2
+
𝜕2𝑇 𝑥, 𝑦, 𝑡

𝜕𝑦2
= 0, 0 < 𝑥, 𝑦 < 10

𝑇 𝑥 = 0, 𝑦 = 400, 0 ≤ 𝑦 ≤ 10
𝑇 𝑥 = 10, 𝑦 = 800, 0 ≤ 𝑦 ≤ 10
𝑇 𝑥, 𝑦 = 10 = 600, 0 ≤ 𝑥 ≤ 10
𝑇 𝑥, 𝑦 = 0 = 900, 0 ≤ 𝑥 ≤ 10

𝑇 𝑥, 𝑦 = 10 = 600

𝑇 𝑥, 𝑦 = 300



2D Wave Equation
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𝑇
1
,𝑦
,𝑡

=
0

𝑇
0
,𝑦
,𝑡

=
0

𝑇 𝑥, 0, 𝑡 = 0

𝑢𝑡𝑡 = 𝑐2(𝑢𝑥𝑥 + 𝑢𝑦𝑦), 0 < 𝑥, 𝑦 < 1, 𝑡 > 0

BC: 𝑢 0, 𝑦, 𝑡 = 𝑢 1, 𝑦, 𝑡 = 𝑢 𝑥, 0, 𝑡 = 𝑢 𝑥, 1, 𝑡 = 0, 𝑡 > 0
IC: 𝑇 𝑥, 𝑦, 𝑡 = 0 = sin 𝑝𝜋𝑥 sin 𝑞𝜋𝑦 , 0 ≤ 𝑥, 𝑦 ≤ 1

𝑇 𝑥, 1, 𝑡 = 0

𝑇 𝑥, 𝑦, 0 = sin 𝑝𝜋𝑥 sin(𝑞𝜋𝑦)



2D Wave Equation
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𝑇
1
,𝑦
,𝑡

=
0

𝑇
0
,𝑦
,𝑡

=
0

𝑇 𝑥, 0, 𝑡 = 0

𝑢𝑡𝑡 = 𝑐2(𝑢𝑥𝑥 + 𝑢𝑦𝑦), 0 < 𝑥, 𝑦 < 1, 𝑡 > 0

BC: 𝑢 0, 𝑦, 𝑡 = 𝑢 1, 𝑦, 𝑡 = 𝑢 𝑥, 0, 𝑡 = 𝑢 𝑥, 1, 𝑡 = 0, 𝑡 > 0
IC: 𝑇 𝑥, 𝑦, 𝑡 = 0 = sin 𝑝𝜋𝑥 sin 𝑞𝜋𝑦 , 0 ≤ 𝑥, 𝑦 ≤ 1

𝑇 𝑥, 1, 𝑡 = 0

𝑇 𝑥, 𝑦, 0 = sin 𝑝𝜋𝑥 sin(𝑞𝜋𝑦)



THANK YOU!

GYAO@CLARKSON.EDU
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