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2D Quantum Dot Structures

Only trained for the 

first 6 Quantum 

States

Schrödinger

Schrödinger

Schrödinger

Schrödinger
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• Training: Apply electric fields in x and y directions 

separately to collect NS sets of WF data

• Simulation: Demonstrated at electric field in a 

arbitrary direction

One-mode POD model predicts the average of 

the collected data



Quantum
State

POD
Energy (eV)

DNS
Energy (eV)

Difference (%)

1 0.226511 0.22602 0.21716

2 0.276652 0.275789 0.312542

3 0.27938 0.278522 0.30753

4 0.32952 0.32831 0.36803

5 0.357149 0.355488 0.466291

6 0.359669 0.358011 0.461969

7 0.409963 0.407977 0.48561

8 0.410194 0.40821 0.4847

2D Quantum Dot Structures

For a 2D quantum-dot structure, if 10 

modes are used, a computational 

speedup near 130 times can be 

achieved. 

States 7 & 8 were NOT trained

The computation was performed in 

Matlab on an i7 laptop PC.
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Theoretical LS error 
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Solution of Eigenvalues and Eigenfunctions of 2-point Correlation Data

න
Ω′

𝑄 Ԧ𝑟, 𝑡 ⊗ 𝑄 Ԧ𝑟′, 𝑡 𝜂 Ԧ𝑟′ 𝑑Ω′ = 𝜆𝜂 Ԧ𝑟 , (1)

𝑄 Ԧ𝑟, 𝑡 ⊗ 𝑄 Ԧ𝑟′, 𝑡 =
1

𝑁𝑠


𝑗=1

𝑁𝑠

𝑄 Ԧ𝑟, 𝑡𝑗 𝑄 Ԧ𝑟′, 𝑡𝑗 .  (2) 

The Nr x Nr eigenvalue problem for a large-scale multi-dimensional structure may be 

enormously large and numerically prohibitive.

The Method of Snapshots: transform the eigenvalue problem from a Nr x Nr space 

domain to an Ns x Ns sampling domain. Nr >> NS

▪ For a 3D problem, Nr may be on the order of several 100,000’s.

▪ For a dynamic problem, Ns is on the order of several 100’s – several 1,000’s; for 

steady problems, 10 -1,000

• Start with the discrete eigenvalue problem. Insert Eq. (2) into (1)
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𝑁𝑠


𝑗=1

𝑁𝑠

𝑄 Ԧ𝑟, 𝑡𝑗 න
Ω′

𝑄 Ԧ𝑟′, 𝑡𝑗 𝜂 Ԧ𝑟′ 𝑑Ω′ = 𝜆𝜂 Ԧ𝑟 ,

4



1

𝑁𝑡


𝑗=1

𝑁𝑠

𝑄 Ԧ𝑟, 𝑡𝑗 න
Ω′

𝑄 Ԧ𝑟′, 𝑡𝑗 𝜂 Ԧ𝑟′ 𝑑Ω′ = 𝜆𝜂 Ԧ𝑟 ,

• Define the projection of the jth sampled data set onto the POD space as

𝑢(𝑡𝑗) = න
Ω′

𝑄 Ԧ𝑟′, 𝑡𝑗 𝜂 Ԧ𝑟′ 𝑑Ω′,

The eigenvalue problem becomes

1

𝑁𝑠


𝑗=1

𝑁𝑠

𝑄 Ԧ𝑟, 𝑡𝑗 𝑢(𝑡𝑗) = 𝜆𝜂 Ԧ𝑟

• Multiply both sides of by 𝑄( Ԧ𝑟, 𝑡𝑖) and perform an integral on each side, 
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𝑁𝑠


𝑗=1

𝑁𝑠

න
Ω

𝑄 Ԧ𝑟, 𝑡𝑖 𝑄 Ԧ𝑟, 𝑡𝑗 𝑑Ω 𝑢(𝑡𝑗) = 𝜆 න
Ω

𝑄 Ԧ𝑟, 𝑡𝑖 𝜂 Ԧ𝑟 𝑑Ω

𝐴𝑖𝑗 =
1

𝑁𝑠
න

Ω

𝑄 Ԧ𝑟, 𝑡𝑖 𝑄 Ԧ𝑟, 𝑡𝑗 𝑑ΩDefine             (2 point correlation in time)  ➔ 𝐀𝑢 = 𝜆𝑢
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Solution of Eigenvalues and Eigenfunctions of 2-point Correlation Data
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Solution of Eigenvalues and Eigenfunctions of 2-point Correlation Data

• Eigenvalue Problem in the sampling domain

𝐀𝑢 = 𝜆𝑢;  𝑜𝑟 

𝐴11 ⋯ 𝐴1𝑗 ⋯ 𝐴1𝑁𝑆

⋮ ⋱ ⋮ ⋰ ⋮
𝐴𝑖1 ⋯ 𝐴𝑖𝑗 ⋯ 𝐴𝑖𝑁𝑆

⋮ ⋰ ⋮ ⋱ ⋮
𝐴𝑁𝑡1 ⋯ 𝐴𝑁𝑡𝑗 ⋯ 𝐴𝑁𝑡𝑁𝑆

𝑢(𝑡1)
⋮

𝑢(𝑡𝑗)

⋮
𝑢(𝑡𝑁𝑆

)

= 𝜆

𝑢(𝑡1)
⋮

𝑢(𝑡𝑗)

⋮
𝑢(𝑡𝑁𝑆

)

Once the eigenvectors, [𝑢1 , 𝑢2 , 𝑢3 , …. 𝑢𝑁𝑠 ] are determined, each POD mode is 

obtained from a linear combination of numerical observations,

𝜂𝑖( Ԧ𝑟) =
1

𝜆𝑁𝑠


𝑗=1

𝑁𝑠

𝑄( Ԧ𝑟, 𝑡𝑗)𝑢𝑖(𝑡𝑗)

The first Ns POD eigenvalues are identical to those derived from the Ns snapshots. 



Concept Demonstration

Generation of Eigenvalues and POD modes

Use a dynamic function of f(x,t) to train the POD modes. The function is described by 4 distinct 

characteristics, 
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Nx = 100;
Ns = 20;
dx = 2;
xx = linspace(0,Nx*2-dx,Nx)';
tt = 0.2*linspace(0,Ns-1,Ns)';

𝑓 𝑥, 𝑡𝑖 = 

𝑗=1

4

𝑓𝑗 𝑥, 𝑡𝑖 ,

• Space: x = [x1, x2, … xk, …, xNx-1, xNx]
T = [0, 2, 4, …, 198]T 

with Nx = 100 and grid size x = 2

• Time: Δ𝑡 = 0.2 with  the number of samples 𝑁𝑠 = 20

• 𝑓 𝑥, 𝑡  includes a Gaussian function, 2 sinusoidal functions 

with different frequencies in space and one polynomial. All 

these functions evolve in time described by different dynamic 

evolution rates either increasing or decreasing in time.



• 𝑓1 𝑥, 𝑡 = 𝑓𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 500𝑒
−

𝑥−100

30

2

𝑒−𝑡

• 𝑓2 𝑥, 𝑡 = 𝑓𝑐𝑜𝑠 = 200 cos
2𝜋𝑥

𝑥𝑚𝑎𝑥−20Δ𝑥
+ 1 1 − 𝑒

−
𝑡2

2

• 𝑓3 𝑥, 𝑡 = 𝑓𝑠𝑖𝑛 = 200 sin
6𝜋𝑥

𝑥𝑚𝑎𝑥−20Δ𝑥
+ 1 𝑒

−
𝑡2
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• 𝑓4 𝑥, 𝑡 = 𝑓𝑝𝑜𝑙𝑦 = 0.3𝑥2 − 100𝑥 + 200 1 − 𝑒− 𝑡
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% 4 distinct functions
fgau = 500*exp(-((xx(1:Nx)-100)/30).^2); % decreasing in time
fcos= 200*(cos(2*pi/(xx(Nx)-20*dx)*xx(:))+1); % increasing in time, stating from 0
fsin= 200*(sin(6*pi/(xx(Nx)-20*dx)*xx(:))+1);% decreasing in time
fpoly = 0.3*xx(:).^2 - 100*xx(:) + 200; % increasing in time, stating from 0

%% Total function with dynamic evolution
ff_t = zeros(Nx,Ns);
for i=1:Ns
    ff_t(:,i) = fgau(:).*exp(-tt(i)) + fcos(:).*(1-exp(-tt(i)^2/2)) + ...
    fsin(:).*exp(-tt(i)^2/5) + fpoly(:).*(1-exp(-tt(i)));
end



Construct the 2-point correlation (Nx x Nx) matrix for f(x,t)

• Average of the 2-point (autocorrelation) correlation matrix for f(x,t):  𝐅 =
1

𝑁𝑠
σ

𝑗=1
𝑁𝑠 𝑓 𝑥, 𝑡𝑗 ⊗

𝑓 𝑥′, 𝑡𝑗 (average over Ns samples in time)

𝑓 𝑥, 𝑡𝑗 ⊗ 𝑓 𝑥′, 𝑡𝑗 =

𝑓 𝑥1, 𝑡𝑗

𝑓 𝑥2, 𝑡𝑗

.

.

.
𝑓 𝑥𝑁𝑥, 𝑡𝑗

∙

𝑓 𝑥1, 𝑡𝑗

𝑓 𝑥2, 𝑡𝑗

.

.

.
𝑓 𝑥𝑁𝑥, 𝑡𝑗

𝑇
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% Average of the 2-point spatial correlation matrix over time
FF = zeros(Nx,Nx);
for i = 1:Ns
    FF = FF + ff_t(:,i)*ff_t(:,i)';
end
FF = FF/Ns;



Solve the eigenvalues 𝝀𝒊 and the eigenfunctions (POD modes) 

𝜼𝒊 from f

The integral is not needed because of an equal spatial division is used 
Arrange the eigenvalues in descending order and the POD modes with the same order
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[V,DD] = eig(FF);
EigenV = flip(diag(DD));
V1 = flip(V,2);
semilogy(EigenV)

• The eigenvalue drops from the first mode to the 4th mode 
by 5 orders of magnitude and becomes nearly zero 
beyond 4th mode. Why?

• Note that  
𝜆1

𝜆5
≈ 1016 and 𝜆 becomes nearly flat because of 

the computer precision

• The decomposition effectively captures 4 distinct 
characteristics from the data with just 4 modes. 

• That is, 4 modes are good enough to represent this 
dynamic problem.  

Eigenvalue Number

Eigenvalue



POD Modes

Normalize the POD mode; i.e., make σ𝑘=1
𝑁𝑥 𝜂𝑗 𝑥𝑘

2
= 1 for j = 1 to Nx
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First mode: 
Average of the 

collected data



Orthonormality

Verify the orthonormality

i.e.,   σ𝑘=1
𝑁𝑥 𝜂𝑖 𝑥𝑘 𝜂𝑗 𝑥𝑘 = 𝛿𝑖𝑗
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% Verify the orthonormality 
modeij_sum = zeros(10,10);
for i = 1:10
    for j = 1:10
        modeij_sum(i,j) = sum(V1(:,i).*V1(:,j));
    end
end



Method of Snapshots: 𝐴𝑖𝑗 =
1

𝑁𝑠


Ω
𝑄 Ԧ𝑟, 𝑡𝑖 𝑄 Ԧ𝑟, 𝑡𝑗 𝑑Ω
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𝐹𝑠𝑛𝑎𝑝 =
1

𝑁𝑠


𝑖=1

𝑁𝑥

𝑓 𝑥𝑖 , 𝑡1

𝑓 𝑥𝑖 , 𝑡2

.

.

.
𝑓 𝑥𝑖 , 𝑡𝑁𝑠

∙

𝑓 𝑥𝑖 , 𝑡1

𝑓 𝑥𝑖 , 𝑡2

.

.

.
𝑓 𝑥𝑖 , 𝑡𝑁𝑠

𝑇

Eigenvalue Number

Eigenvalue

Snapshot 
Method

2-point 
correlation 
matrix

The eigenvalues generated from the method of snapshots 

are identical to the first NS eigenvalues calculated from the 

autocorrelation (2-point correlation) matrix.

% Average of the snapshot matrix over space
F_snap = zeros(Ns,Ns);
for i = 1:Nx
    F_snap = F_snap + ff_t(i,:)'*ff_t(i,:);
end
F_snap = F_snap/Ns;
[Vsnap,Dsnap] = eig(F_snap);
EigenVsnap = flip(diag(Dsnap));
V1snap = flip(Vsnap,2);
semilogy(EigenVsnap);
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Next. obtain POD Modes from 
• 2-point correlation (autocorrelation) matrix

• Method of Snapshots

Verify that they are indeed identical for the first 4 modes.

Plot modes from these 2 approaches on top of each other for the first 6 modes

POD modes  derived from the 2-point correlation matrix 
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