

NSF CyberTraining Winter Workshop

Introduction to Proper Orthogonal Decomposition

concepts, formulation and applications

Part III: POD - Examples & Method of Snapshots

Ming-Cheng Cheng

Department of Electrical & Computer Engineering Clarkson University, Potsdam, NY 13699

National Science Foundation WHERE DISCOVERIES BEGIN

Supported by NSF OAC-2118079

2D Quantum Dot Structures

One-mode POD model predicts the average of the collected data

- **Training:** Apply electric fields in *x* and *y* directions **separately** to collect *N_S* sets of WF data
- **Simulation:** Demonstrated at electric field in a arbitrary direction

2D Quantum Dot Structures

Theoretical LS error

Average LS errors over all QSs

$$
Err_{M,ls,av} = \sqrt{\sum_{i=1}^{N_{QS}} \int_{\Omega} \left[\psi_{M,P,n} - \psi_n \right]^2 d\Omega} / N_Q
$$

For a 2D quantum-dot structure, if 10 modes are used, a computational speedup near 130 times can be achieved.

States 7 & 8 were NOT trained

The computation was performed in Matlab on an *i7* laptop PC.

Solution of Eigenvalues and Eigenfunctions of 2-point Correlation Data

$$
\int_{\Omega'} \langle Q(\vec{r},t) \otimes Q(\vec{r}',t) \rangle \eta(\vec{r}') d\Omega' = \lambda \eta(\vec{r}), \quad (1)
$$

$$
\langle Q(\vec{r},t) \otimes Q(\vec{r}',t) \rangle = \frac{1}{N_s} \sum_{j=1}^{N_s} Q(\vec{r},t_j) Q(\vec{r}',t_j). \quad (2)
$$

The *N^r* x *Nr* eigenvalue problem for a large-scale multi-dimensional structure may be enormously large and numerically prohibitive.

The Method of Snapshots: transform the eigenvalue problem from a *N^r* x *Nr* space domain to an $N_s \times N_s$ sampling domain. $N_r >> N_s$

- For a 3D problem, N_{*r*} may be on the order of several 100,000's.
- For a dynamic problem, N_s is on the order of several 100's several 1,000's; for steady problems, 10 -1,000
- Start with the discrete eigenvalue problem. Insert Eq. (2) into (1)

$$
\frac{1}{N_S}\sum_{j=1}^{N_S}Q(\vec{r},t_j)\int_{\Omega'}Q(\vec{r}',t_j)\eta(\vec{r}')d\Omega'=\lambda\eta(\vec{r}),
$$

Solution of Eigenvalues and Eigenfunctions of 2-point Correlation Data

$$
\frac{1}{N_t}\sum_{j=1}^{N_s}Q(\vec{r},t_j)\int_{\Omega'}Q(\vec{r}',t_j)\eta(\vec{r}')d\Omega'=\lambda\eta(\vec{r}),
$$

• Define the projection of the *j*th sampled data set onto the POD space as

$$
u(t_j) = \int_{\Omega'} Q(\vec{r}', t_j) \eta(\vec{r}') d\Omega',
$$

The eigenvalue problem becomes

$$
\frac{1}{N_S}\sum_{j=1}^{N_S} Q(\vec{r},t_j) u(t_j) = \lambda \eta(\vec{r})
$$

• Multiply both sides of by $Q(\vec{r}, t_i)$ and perform an integral on each side,

$$
\frac{1}{N_S} \sum_{j=1}^{N_S} \left[\int_{\Omega} Q(\vec{r}, t_i) Q(\vec{r}, t_j) d\Omega \right] u(t_j) = \lambda \int_{\Omega} Q(\vec{r}, t_i) \eta(\vec{r}) d\Omega
$$

 $A_{ij} =$ 1 $N_{\rm s}$ \mathbf{I} Ω Define $A_{ij} = \frac{1}{N} \int Q(\vec{r}, t_i) Q(\vec{r}, t_j) d\Omega$ (2 point correlation in time) $\rightarrow A\vec{u} = \lambda \vec{u}$

Clarkson

lefv convention

Solution of Eigenvalues and Eigenfunctions of 2-point Correlation Data

Clarkson defy convention

• **Eigenvalue Problem in the sampling domain**

$$
\mathbf{A}\vec{u} = \lambda \vec{u}; \quad \text{or} \quad\n\begin{bmatrix}\nA_{11} & \cdots & A_{1j} & \cdots & A_{1N_S} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
A_{i1} & \cdots & A_{ij} & \cdots & A_{iN_S} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
A_{N_t1} & \cdots & A_{N_tj} & \cdots & A_{N_tN_S}\n\end{bmatrix}\n\begin{bmatrix}\nu(t_1) \\
\vdots \\
u(t_j) \\
\vdots \\
u(t_{N_S})\n\end{bmatrix} = \lambda \begin{bmatrix}\nu(t_1) \\
\vdots \\
u(t_j) \\
\vdots \\
u(t_{N_S})\n\end{bmatrix}
$$

Once the eigenvectors, $[\vec{u}_1, \vec{u}_2, \vec{u}_3, \dots, \vec{u}_{Ns}]$ are determined, each POD mode is obtained from a linear combination of numerical observations,

$$
\eta_i(\vec{r}) = \frac{1}{\lambda N_s} \sum_{j=1}^{N_s} Q(\vec{r}, t_j) u_i(t_j)
$$

The first *N^s* POD eigenvalues are identical to those derived from the *N^s* snapshots.

Concept Demonstration

Generation of Eigenvalues and POD modes

Use a dynamic function of $f(x,t)$ to train the POD modes. The function is described by 4 distinct characteristics, Λ

$$
f(x, t_i) = \sum_{j=1}^{4} f_j(x, t_i),
$$

- Space: $x = [x_1, x_2, ..., x_k, ..., x_{Nx-1}, x_{Nx}]^T = [0, 2, 4, ..., 198]^T$ with $N_x = 100$ and grid size $\Delta x = 2$
- Time: $\Delta t = 0.2$ with the number of samples $N_s = 20$
- $f(x, t)$ includes a **Gaussian** function, **2 sinusoidal** functions with different frequencies in space and one **polynomial**. All these functions evolve in time described by different dynamic evolution rates either increasing or decreasing in time.

 $Nx = 100;$ $Ns = 20$; $dx = 2$; $xx = linespace(0,Nx*2-dx,Nx)$; $tt = 0.2*$ linspace $(0,Ns-1,Ns)$;

•
$$
f_1(x,t) = f
$$
gaussian = 500 $e^{\left(-\left(\frac{x-100}{30}\right)^2\right)}e^{-t}$

•
$$
f_2(x,t) = f \cos = 200 \left[\cos \left(\frac{2\pi x}{x_{max} - 20\Delta x} \right) + 1 \right] \left[1 - e^{\left(-\frac{t^2}{2} \right)} \right]
$$

•
$$
f_3(x,t) = f \sin = 200 \left[\sin \left(\frac{6\pi x}{x_{max} - 20\Delta x} \right) + 1 \right] e^{\left(-\frac{t^2}{5} \right)}
$$

•
$$
f_4(x,t) = f \rho oly = (0.3x^2 - 100x + 200) [1 - e^{-t}]
$$

% 4 distinct functions fgau = $500*exp(-(x*(1:Nx)-100)/30).2)$; % decreasing in time fcos= $200*(cos(2*pi/(xx(Nx)-20*dx)*xx))+1$; % increasing in time, stating from 0 fsin= $200*(\sin(6*pi/(xx(Nx)-20*dx)*xx(:))+1);%$ decreasing in time fpoly = $0.3*xx$:).^2 - 100*xx(:) + 200; % increasing in time, stating from 0

%% Total function with dynamic evolution

```
ff_t = zeros(Nx,Ns);for i=1:Ns
  ff_t(:,i) = fgau(:,*exp(-tt(i)) + fcos(:,*(1-exp(-tt(i))^2)) + ...fsin(:).*exp(-tt(i)^2/5) + fpoly(:).*(1-exp(-tt(i)));
end
```


Construct the 2-point correlation $(N_x \times N_x)$ matrix for $f(x,t)$

• Average of the 2-point (autocorrelation) correlation matrix for $f(x,t)$: $\mathbf{F} = \frac{1}{N}$ $\frac{1}{N_S} \sum_{j=1}^{N_S} f(x, t_j) \otimes$ $f(x', t_j)$ (average over *Ns* samples in time)

$$
f(x, t_j) \otimes f(x', t_j) = \begin{bmatrix} f(x_1, t_j) \\ f(x_2, t_j) \\ \vdots \\ f(x_{Nx}, t_j) \end{bmatrix} \cdot \begin{bmatrix} f(x_1, t_j) \\ f(x_2, t_j) \\ \vdots \\ f(x_{Nx}, t_j) \end{bmatrix}^T
$$

% Average of the 2-point spatial correlation matrix over time $FF = zeros(Nx,Nx);$ for $i = 1:Ns$ $FF = FF + ff_t(:,i)*ff_t(:,i)$; end

 $FF = FF/Ns;$

Clarkson

UNIVERSITY

defy convention

Solve the eigenvalues λ_i and the eigenfunctions (POD modes) $\boldsymbol{\eta}_i$ from f

The integral is not needed because of an equal spatial division is used Arrange the eigenvalues in descending order and the POD modes with the same order

 $[V,DD] = eig(FF);$ EigenV = flip(diag(DD)); $V1 = flip(V,2);$ semilogy(EigenV)

- The eigenvalue drops from the first mode to the 4th mode by 5 orders of magnitude and **becomes nearly zero beyond 4th mode.** Why?
- Note that $\frac{\lambda_1}{\lambda_2}$ λ_5 $\approx 10^{16}$ and λ becomes nearly flat because of the computer precision
- The decomposition effectively captures 4 distinct characteristics from the data with just 4 modes.

That is, 4 modes are good enough to represent this dynamic problem.

Eigenvalue Number

POD Modes

Orthonormality

Verify the orthonormality

i.e.,
$$
\sum_{k=1}^{N_x} \eta_i(x_k) \eta_j(x_k) = \delta_{ij}
$$

% Verify the orthonormality modeij_sum = zeros(10,10); for $i = 1:10$ for $j = 1:10$ modeij_sum(i,j) = sum(V1(:,i).*V1(:,j)); end end

modeij_sum **X**

10x10 double

Clarkson

UNIVERSITY

defy convention

Method of Snapshots: $A_{ij} = \frac{1}{N}$ $\frac{1}{N_S}\int_{\Omega} Q(\vec{r},t_i) Q(\vec{r},t_j) d\Omega$

$$
F_{snap} = \frac{1}{N_s} \sum_{i=1}^{Nx} \begin{bmatrix} f(x_i, t_1) \\ f(x_i, t_2) \\ \vdots \\ f(x_i, t_{N_s}) \end{bmatrix} \cdot \begin{bmatrix} f(x_i, t_1) \\ f(x_i, t_2) \\ \vdots \\ f(x_i, t_{N_s}) \end{bmatrix}^T
$$

% Average of the snapshot matrix over space F snap = zeros(Ns,Ns); for $i = 1:Nx$ F_snap = F_snap + ff_t(i,:)'*ff_t(i,:); end F_snap = F_snap/Ns; $[Vsnap, Dsnap] = eig(F_snap);$

EigenVsnap = flip(diag(Dsnap)); V1snap = flip(Vsnap,2); semilogy(EigenVsnap);

The eigenvalues generated from the method of snapshots are identical to the first N_S eigenvalues calculated from the autocorrelation (2-point correlation) matrix.

Clarkson

VFRSIT

Next. obtain POD Modes from

- 2-point correlation (autocorrelation) matrix
- Method of Snapshots

Verify that they are indeed identical for the first 4 modes.

Plot modes from these 2 approaches on top of each other for the first 6 modes

POD modes derived from the 2-point correlation matrix

