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POD Simulation Methodology involves 2 projections

• Mode Training: maximizing mean square data projection onto each of the POD 

modes: 
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𝜂( Ԧ𝑟)2𝑑Ω : Projection onto 𝜂 Ԧ𝑟
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➔ න
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𝑄 Ԧ𝑟, 𝑡 ⊗ 𝑄 Ԧ𝑟′, 𝑡 𝜂 Ԧ𝑟′ 𝑑Ω′ = 𝜆𝜂 Ԧ𝑟

This process ensures a minimum least square error with a smallest number of modes if the 

training is properly done (i.e., if the data quality is sufficient).

• “Galerkin” projection of the heat conduction equation onto the the ith POD 

mode, 𝜂𝑖( Ԧ𝑟)
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The Galerkin projection closes the model and implement physical principles into the model.2



• Galerkin projection (transformation) onto the the ith POD mode, 𝜂𝑖( Ԧ𝑟)
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• Using                                      ➔  M mode POD model, a set of M-dimensional ODEs
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Example, heat conduction in semiconductor Chips

𝑐𝑖,𝑗 = න
𝛺

𝜌𝐶𝜂𝑖𝜂𝑗 𝑑𝛺, 𝑃𝑝𝑜𝑑,𝑖 = න
𝛺

𝜂𝑖𝑃𝑑 Ԧ𝑥 𝑡 𝑑𝛺 − න
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𝜂𝑖 −𝑘∇𝑇 ⋅ 𝑑 Ԧ𝑆𝑔𝑖,𝑗 = න
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𝑘∇𝜂𝑖 ⋅ ∇𝜂𝑗 𝑑𝛺,

These POD model parameters are thus pre-tabulated for solving 

the ODEs for Ԧ𝑎 = 𝑎1, 𝑎2, … 𝑎𝑗 , … 𝑎𝑀
𝑇

 



Procedure for Constructing the POD Simulation Model

1. Data Collection from direct numerical simulation (DNS) ➔ 𝑄 Ԧ𝑟, 𝑡

2. Solving the 2-point correlation eigenvalue problem for 𝜆𝑗 & 𝜂𝑗( Ԧ𝑟). 

Observe the Eigenvalue spectrum to determine the number of 
modes, M, where 𝜆𝑗 represents the mean squared information 

captured by 𝜂𝑗 Or estimate the least square error based on

𝐸𝑟𝑟𝐿𝑆,𝑀 = ൙෍

𝑖=𝑀+1

𝑁𝑠

𝜆𝑖 ෍

𝑖=1

𝑁𝑠

𝜆𝑖

3. Project the governing equation onto the POD Space (accounting for 
physical principles) ➔ a set of M ODEs for 𝑎𝑗

4. Evaluate the model parameters (coefficients of the ODEs

Implementation of POD in physics simulation

• Solve the ODEs to obtain 𝑎𝑗

• Post processing: the solution 𝑄 Ԧ𝑟, 𝑡 = σ𝑗=1
𝑀 𝑎𝑗 𝑡 𝜂𝑗( Ԧ𝑟)
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• Thermal data collection for extraction of POD modes and eigenvalues:

Application to FinFETs: steady-state

Device1
5-Fin FinFET

Device2

Device3

Device4

steady

dynamic

Training settings for POD modes to 

account for realistic BC’s for Device1

5-fin FinFET
Device1

Device2
Device4

Device3

S
D

Structure for thermal data collection of Device1 to 
account for the influences from the neighboring devices
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Power Strengths in Demonstration

Demonstration

from S, channel to D

across 5 junctions

5-fin FinFET

Device1

Device2
Device4

Device3

S
D

Application to FinFETs: steady-state
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Data collection for extraction of POD modes and eigenvalues:

• Synchronized-random power pulses applied 

the neighboring devices

steady

dynamic

ss

Device1

Device2
Device4

Device3

Application to FinFETs:  dynamic

• A periodic train of power pulses applied 

to junctions of Device1

Periodic power pulses for 

Device1

Random power pulses for 

the neighboring devices

f =2GHz
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4.62 ns

across 5 junctions

from S, channel to D

at 4.62 ns

at 

4.62 ns

( )= 
 =

s

N

i

ils Ndeerr
s

1

2

Least square error

No. of POD modes 4 modes 6 modes

errls 0.063 oC 0.042 oC

Random power pulses applied to all device junctions

A reduction in DoF by 5 orders of magnitude is achievedDevice1

Application to FinFETs:  dynamic
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Application to a CPU, AMD ATHLON II X4 610e 

Very accurate prediction 

of the dynamic 

temperature distribution 

even beyond the training 

time

Eigenvalue, 

trained for 4.1 ms
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t = 6.2 ms

Dynamic power maps



Eigenvalue, 

trained for 4.1 ms

Application to a CPU, AMD ATHLON II X4 610e : Dynamic

Accurate prediction 

of the dynamic 

temperature 

distribution even 

beyond the training 

time

Post1: heting layer

Post2: entire CPU

Entire chip: a reduction in computational time over 3,500 times

Heating layer: a reduction in computational time near 26,000 times
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• In most applications relevant to thermal issues, thermal information only 

needed in high temperature region 
➔ Post processing only need to perform at certain grid points

➔ Computational time is at least order shorter. 𝑄 Ԧ𝑟, 𝑡 = σ𝑗=1
𝑀 𝑎𝑗 𝑡  𝜂𝑗( Ԧ𝑟)

More information on the POD Thermal Simulation 
Methodology

• For very large domain structures, such as GPUs with hundreds or thousands of 

cores, the approaches can be modified to improve the training efficiency.
• Multi-block POD: POD Blocks + Domain decomposition + Discontinuous Galekin

• Fast Thermal Simulation of FinFET Circuits Based on a Multi-Block Reduced-Order Model, IEEE Trans. 

CAD ICs & Systems, 2016. DOI: 10.1109/TCAD.2015.2501305

• A methodology for thermal simulation of interconnects enabled by model reduction with material property 

variation, J. Computational Sci..2022. doi.org/10.1016/j.jocs.2022.101665

• Chip-level Thermal Simulation for a Multicore Processor Using a Multi-Block Model Enabled by Proper 

Orthogonal Decomposition, ITherm 2022. Doi: 10.1109/iTherm54085.2022.9899503

• Ensemble POD: Individual POD + Domain Truncation + Superposition
• Predicting Accurate Hot Spots in a More Than Ten-Thousand-Core GPU with a Million Time Speedup over 

FEM Enabled by a Physics-based Learning Algorithm”, ITherm 2024, May 28-May 31, 2024. 
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Basic Concepts of Electron Wave functions (WFs) in nanostructure

Schrödinger equation:  𝛻 ⋅  −
ℏ2

2𝑚∗
𝛻 +  𝑈 Ԧ𝑟  𝜓 Ԧ𝑟 =  𝐸 𝜓 Ԧ𝑟  Or 𝐻𝜓 = 𝐸𝜓

   where H is the Hamiltonian operator and E is the total energy for an electron

potential 
energy

total 
energy

Kinetic 
energy

Example: Quantum Eigenvalue Problems for Nanostructure

Quantum eigenvalue problem ➔

• Eigenvalues: discreate energies of an electron in a small-

scale confinement

• The larger the spatial confinement is, the closer the discrete 

energies are ➔ continuous energy ➔ classical 

• Eigenfunctions: electron WFs 𝜓𝑖 in different energy states 

(or eigenstates). 

• 𝜓𝑖( Ԧ𝑟) 2 represents the probability density of the electron in 

the i-th quantum state at Ԧ𝑟.



Schrödinger Equation: 𝛻 ⋅ −
ℏ2

2𝑚∗
𝛻ψ Ԧ𝑟 + 𝑈 Ԧ𝑟 𝜓 Ԧ𝑟 = 𝐸𝜓 Ԧ𝑟

• The projection leads to the weak form of the Schrödinger Equation

න
Ω

𝛻𝜂𝑖 ⋅
ℏ2

2𝑚∗
𝛻ψ𝑑Ω + න

Ω

𝜂𝑖𝑈𝜓𝑑Ω − න
𝑠

𝜂𝑖

ℏ2

2𝑚∗
𝛻𝜓 ⋅ 𝑑 Ԧ𝑆 = 𝐸 න

Ω

𝜂𝑖𝜓𝑑Ω
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• Galerkin projection of the Schrödinger equation onto the ith POD mode, 𝜂𝑖( Ԧ𝑟)

න
Ω

𝛻 ⋅ −
ℏ2

2𝑚∗
𝛻ψ Ԧ𝑟 + 𝑈 Ԧ𝑟 𝜓 Ԧ𝑟 = 𝐸𝜓 Ԧ𝑟 𝜂𝑖( Ԧ𝑟)𝑑Ω

Using the following identities:

𝛻 ⋅ 𝜂𝑖

ℏ2

2𝑚∗
𝛻ψ = 𝛻𝜂𝑖 ⋅

ℏ2

2𝑚∗
𝛻ψ + 𝜂𝑖𝛻 ⋅

ℏ2

2𝑚∗
𝛻ψ

Gauss′s Law: න
Ω

𝛻 ⋅ 𝜂𝑖

ℏ2

2𝑚∗
𝛻ψ 𝑑Ω = න

S

𝜂𝑖

ℏ2

2𝑚∗
𝛻ψ ⋅ 𝑑 Ԧ𝑆

Example: Quantum Eigenvalue Problems for Nanostructure



• Galerkin projection (transformation) onto the the ith POD mode, 𝜂𝑖( Ԧ𝑟)

න
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𝛻𝜂𝑖 ⋅
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2𝑚∗
𝛻ψ𝑑Ω + න

Ω
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2𝑚∗
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𝜂𝑖𝜓𝑑Ω

• Using                              ➔ an M-dimensional eigenvalue problem in the POD space

𝑯𝜂 Ԧ𝑎 = 𝐸 Ԧ𝑎, where Ԧ𝑎 = 𝑎1 𝑎2  … 𝑎𝑀
𝑇

where Hamiltonian in the POD eigenspace: H = T + U + B

𝜓 Ԧ𝑟 = ෍

𝑗=1

𝑀

𝑎𝑗𝜂𝑗 Ԧ𝑟

𝑇𝜂 𝑖,𝑗 = න
Ω

𝛻𝜂𝑖 Ԧ𝑟 ⋅
ℏ2

2𝑚∗
𝛻𝜂𝑗 Ԧ𝑟 𝑑Ω, 𝑩𝜂 𝑖,𝑗 = න

𝑠

𝜂𝑖 Ԧ𝑟
−ℏ2

2𝑚∗
𝛻𝜓 Ԧ𝑟 ⋅ 𝑑 Ԧ𝑆𝑈𝜂 𝑖,𝑗 = න

Ω

𝜂𝑖 Ԧ𝑟 𝑈 Ԧ𝑟 𝜓 Ԧ𝑟 𝑑Ω ,

Interior kinetic energy matrix        Potential energy matrix    Boundary kinetic energy matrix
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These POD model parameters can be pre-tabulated for solving the ODEs for 

Ԧ𝑎 = 𝑎1, 𝑎2, … 𝑎𝑗 , … 𝑎𝑀
𝑇

 

Example: Quantum Eigenvalue Problems for Nanostructure
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Different approaches to train the POD modes  ➔

• Individual-state POD model: generates one set pf POD modes for each selected 

individual state

NQS selected quantum states ➔ NQS sets of POD modes; ; i.e., NQS quantum POD models

• Global POD model: generates only one set of POD modes for all the selected states

Schrödinger equation:  𝛻 ⋅  −
ℏ2

2𝑚∗ 𝛻 +  𝑈 Ԧ𝑟  𝜓 Ԧ𝑟 =  𝐸 𝜓 Ԧ𝑟  𝑂𝑅 𝐻𝜓 = 𝐸𝜓

After solving the ith state eigenenergy 𝐸𝑖, and eigenvector Ԧ𝑎𝑖 from the Hamiltonian 

equation in the POD space, 𝑯𝜂 Ԧ𝑎 = 𝐸 Ԧ𝑎, the electron WF of the ith quantum state is 

calculated from

𝜓𝑖 Ԧ𝑟 = Ԧ𝑎𝑖
𝑇 ∙ Ԧ𝜂 = ෍

𝑗=1

𝑀

𝑎𝑗,𝑖  𝜂𝑗 Ԧ𝑟

Example: Quantum Eigenvalue Problems for Nanostructure



Multi Quantum Well Structure 

Wave Function (WF) Data Collection with potential (or electric field) variation
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Apply various electric fields (indicated by the slope of the conduction band) to collect 
Ns sets of WF data, where Ns = NF x NQS 

NF is the number of applied electric fields



Multi Quantum Wells using 10 modes in POD model 

Quantum State 1 2 3 4

LS error 0.015% 0.028% 0.037% 0.042% 17



Quantum State 5 6 7 8

LS error 0.042% 0.041% 0.064% 0.018%

Multi Quantum Wells using 10 modes in POD model 
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