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https://www.researchgate.net/figure/Mesh-of-a-

MOSFET-with-a-polysilicon-gate_fig1_267688735

Mesh of a MOSFET 

Applications of POD Simulation Methodology
Physics Simulation of Domain Structures with Spatial Details
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• Because of a large number of grids (nodes, or degrees 

of freedom) needed to solve the physical quantity 

numerically

• Usually, several 100 thousands or millions of nodes for 

a 3D problem

• Several 100 thousands or millions of coupled 

differential equations are needed

Numerical solution with detailed spatial solution in multi-

dimensional structures:  

 Extremely time consuming.  Why?



A few examples in different areas of research and industrial applications:

Applications of POD Simulation Methodology
Physics Simulation of Domain Structures with Spatial Details

3

• Heat Transfer Problems: Heat Transfer Equation

• Nanostructures and Materials: Schrödinger Equation - Quantum Wave 

Equation (Quantum Eigenvalue problem), relevant to DFT simulation

• Electromagnetics and Photonics: Eigenvalue Problem or dynamic Wave 

Propagation

• Charge Carrier Transport in Semiconductor Devices: Electron/hole transport 

equations in (6D) phase space

• Phonon Transport in nanostructures/nanodevices: Phonon Boltzman Transport 

Equation (6D) phase space

• Fluid dynamics: Navier Stokes Equations, conservation of energy, momentum, 

and mass



Heat Transfer problems, for example, for 

semiconductor technology: semiconductor 

devices, integrated circuits, etc. 
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Heat Transfer problems: CPUs, GPUs, etc. 

Intel Xeon 18 core E5-2699v3 CPU

Quad-core AMD ATHLON II X4 610e 

Tesla Volta GV100 GPU with 13,440 cores, including FP32, FP64, 

INT32 and Tensor Cores. 5



Si quantum-dot intermediate band solar cell
Nanotechnology, 24, 265401, 2013
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InGaAs/InAlAs Quantum Interband 

Cascade Laser (IEEE JQE Vol. 40, p. 1663, 2004)

Quantum eigenvalue problem, Schrödinger equation 
nanostructure, superlattice materials, density functional theory (DFT)

 

∇ ⋅ −
ℏ2

2𝑚∗
∇ψ Ԧ𝑟 + 𝑈 Ԧ𝑟 𝜓 Ԧ𝑟 = 𝐸𝜓 Ԧ𝑟 ,
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https://news.samsung.com/global/why-are-quantum-

dot-displays-so-good

Quantum Dot LEDs for TV and Cell phone Displays

Apple: Hybrid Quantum Dot LED and OLED Displays

https://www.patentlyapple.com/2019/10/apple-won-42-patents-

today-covering-hybrid-quantum-dot-displays-guis-supporting-3d-

ar-models-a-health-study-more.html

Samsung: Quantum Dot LEDs

Quantum eigenvalue problem, Schrödinger equation 
nanostructure, superlattice materials, density functional theory (DFT)

 

∇ ⋅ −
ℏ2

2𝑚∗
∇ψ Ԧ𝑟 + 𝑈 Ԧ𝑟 𝜓 Ԧ𝑟 = 𝐸𝜓 Ԧ𝑟 ,



Electromagnetics or photonics structures:   Dynamic wave equation, wave 

equation in frequency domain, EM eigenvalue problem)

• Dynamic EM Wave equation:  𝜇𝜖
𝜕2𝐸 Ԧ𝑟,𝑡

𝜕𝑡2 + 𝜇𝜎
𝜕𝐸 Ԧ𝑟,𝑡

𝜕𝑡
− ∇2𝐸 Ԧ𝑟, 𝑡 = −𝜇

𝜕 Ԧ𝑗 Ԧ𝑟,𝑡

𝜕𝑡

circular 

polarization
Linear polarization
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https://en.wikipedia.org/wiki/Electromagnetism
https://en.wikipedia.org/wiki/Electromagnetic

_radiation

Diffraction of a Gaussian 

beam on a grating structure 

simulated using the FDTD 

(finite-difference time-

domain) method.  
(https://www.photond.com/products/omnis

im/omnisim_applications_06.htm)



Electromagnetic Eigenvalue Problems

Electromagnetic Band Gap (EBG) Structures 

https://en.wikipedia.org/wiki/Negative_index_metamaterials   

Metamaterials
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https://www.tech-faq.com/what-are-photonic-crystals.html

https://en.wikipedia.org/wiki/Photonic_crystal 

Applications:

• Color selections

• Sensors

• Optical filters

• Photonic Crystal fibers

• Optical computing

∇2𝐸 Ԧ𝑟 = −
𝜔

𝑐

2

𝜖𝑟𝐸 Ԧ𝑟

Bloch Function: 𝐸 Ԧ𝑟 = 𝑢 Ԧ𝑟 𝑒𝑖𝑘∙ Ԧ𝑟 

https://en.wikipedia.org/wiki/Negative_index_metamaterials
https://www.tech-faq.com/what-are-photonic-crystals.html
https://en.wikipedia.org/wiki/Photonic_crystal


Charge carrier transport in semiconductor devices (TCAD): 

Boltzmann transport equation (BTE), hydrodynamic, energy transport model, drift-diffusion model
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Drift-diffusion model 

Probability density function 

in 6D space: 𝑓 Ԧ𝑟, 𝑘, 𝑡

𝑛 Ԧ𝑟 𝑣𝑥( Ԧ𝑟) 𝑣𝑦( Ԧ𝑟)

Hydrodynamic Model 

M. Shen, T. Zhou, MC Cheng, R. Fithen, Computer Methods Appl. Mech & Eng, Vol. 

190, 2875-2891, February 16, 2001.
10



How to develop a very efficient model (compact model) for a structure 

that requires the solution with spatial details?

Reduce the numerical degrees of freedom (DoF) by several orders of magnitude!   

How? Projection or Mathematical Transformation
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Inner Product of vectors:  

  Ԧ𝑎 ∙ 𝑏 = 𝑎 𝑏 𝑐𝑜𝑠𝜃 = σ𝑖=1
𝑀 𝑎𝑖𝑏𝑖 

= 𝑎𝑥𝑏𝑥 +𝑎𝑦 𝑏𝑦 +𝑎𝑧𝑏𝑧 (in real space)

Inner Product of functions:  

   𝑓 ∙ 𝑔 = 𝑎׬

𝑏
𝑓 𝑥 𝑔 𝑥 𝑑𝑥

L2 Norm: 𝑔 = 𝑎׬

𝑏
𝑔 𝑥 2𝑑𝑥

Projection of 𝑓 onto 𝑔 :
𝑓∙𝑔

𝑔

L2 Norm: 𝑏 = σ𝑖=1
𝑀 𝑏𝑖

2

Projection of 

Ԧ𝑎 onto 𝑏 :
POD: Maximizing the 

average of 

(Projection)^2  

𝑓 ∙ 𝑔

𝑔

2



• A popular projection, Fourier series (frequency domain projection)

𝑓 𝑡 = ෍

𝑛=1

𝑀

𝑎𝑛𝑒𝑗𝑛𝜔𝑡 = ෍

𝑛=1

𝑀

𝑎𝑛𝜂𝑛 𝑡 , or in space 𝑓 𝑥 = ෍

𝑛=1

𝑀

𝑎𝑛𝑒𝑗𝑛𝑘𝑥 = ෍

𝑛=1

𝑀

𝑎𝑛𝜂𝑛(𝑥) 

 

where the basis functions (or modes) 𝑒𝑗𝑛𝜔𝑡 or 𝑒𝑗𝑛𝑘𝑥 are effective only for periodic 

functions; 𝜔 =
2𝜋

𝑇
 and 𝑘 = 2𝜋/𝜆

• Spherical Harmonic Expansion: 

Legendre Polynomials 
• Cylindrical harmonic expansion: 

Bessel Functions

Orbits of the electron 

in hydrogen

https://brilliant.org/wiki/

hydrogen-atom/

https://opg.optica.org/oe/fulltext.cfm?uri=oe-18-24-25299&id=208252

All-silica fiber Bessel-

like beam generator



• Instead of assuming the functions for the modes, a learning 

algorithm can be used to extract the modes.

The most commonly used projection-based learning methods:

▪ PCA: Principal component analysis

▪ SVD: Singular value decomposition

• The machine learning methods only provide statistical models to minimize 

the statistical variation in the prediction 

- Offer no guideline on physical principles in the governing equation for the 

spatial variation and/or dynamic evolution for the physical quantity.

▪ Only work well for prediction of one-to-one correspondence relation

▪ Not accurate for dynamic (initial value) problems

▪ Poor performance for sudden change in physical quantity

▪ Work well for interpolation but poorly for extrapolation

13



Effective projections of both the data and the governing equation 

onto the POD space

𝑄 Ԧ𝑟, 𝑡 = ෍

𝑗=1

𝑀

𝑎𝑗 𝑡 𝜂𝑗( Ԧ𝑟)

• POD finds a mode 𝜂( Ԧ𝑟) that maximizes its mean square inner product (projection) with 

the solution data

൘
𝑄 ∙ 𝜂

𝜂

2

= න
Ω

𝑄( Ԧ𝑟, 𝑡)𝜂( Ԧ𝑟)𝑑Ω

2

න
Ω

𝜂( Ԧ𝑟)2𝑑Ω

  indicate the average of the data collected over numerical observations (or snapshots in time or 

over the samples) accounting for the parametric variations.

• This maximization process leads to an eigenvalue problem of 2-point correlation of data

න
Ω′

𝑄 Ԧ𝑟, 𝑡 ⊗ 𝑄 Ԧ𝑟′, 𝑡 𝜂 Ԧ𝑟′ 𝑑Ω′ = 𝜆𝜂 Ԧ𝑟 ,

which offers a minimum least square error with a smallest number of modes (DoF) if the 

training is properly done (i.e., if the data quality is sufficient). 14
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Discretization

Q data sets are collected from detailed numerical simulation (DNS)

Continuous eigenvalue problem

 න
Ω′

𝑄 Ԧ𝑟, 𝑡 ⊗  𝑄 Ԧ𝑟′, 𝑡 𝜂  Ԧ𝑟′ 𝑑Ω′ = 𝜆𝜂 Ԧ𝑟 ,

𝑄 Ԧ𝑟, 𝑡 ⊗  𝑄 Ԧ𝑟′, 𝑡 =
1

𝑁𝑠
෍

𝑗=1

𝑁𝑠

𝑄 Ԧ𝑟, 𝑡𝑗 ⊗ 𝑄 Ԧ𝑟′, 𝑡𝑗 =
1

𝑁𝑠
෍

𝑗=1

𝑁𝑠

𝑄 𝑡𝑗 𝑄𝑇 𝑡𝑗

 for each sample: 𝑄 ⊗ 𝑄 = 𝑄 𝑄𝑇 =

𝑄1

𝑄2

⋮
𝑄𝑁𝑟

𝑄1 𝑄2  … 𝑄𝑁𝑟
=

𝑄1𝑄1 ⋯ 𝑄1𝑄𝑗 ⋯ 𝑄1𝑄𝑁𝑟

⋮ ⋱ ⋮ ⋰ ⋮
𝑄𝑖𝑄1 ⋯ 𝑄𝑖𝑄𝑗 ⋯ 𝑄𝑖𝑄𝑁𝑟

⋮ ⋰ ⋮ ⋱ ⋮
𝑄𝑁𝑟

𝑄1 ⋯ 𝑄𝑁𝑟
𝑄𝑗 ⋯ 𝑄𝑁𝑟

𝑄𝑁𝑟

,

A matrix dimension of Nr x Nr may be too large to manage in 3D problems for a dense matrix. 

The method of snapshots will be introduced later to minimize the computational effort



Example, heat conduction in semiconductor Chips

Heat conduction equation:
𝜕𝜌𝐶𝑇( Ԧ𝑟, 𝑡)

𝜕𝑡
− 𝛻 ⋅ 𝑘𝛻𝑇( Ԧ𝑟, 𝑡) = 𝑃𝑑 Ԧ𝑟, 𝑡

16

𝑄 Ԧ𝑟, 𝑡 =  𝑇 Ԧ𝑟, 𝑡 = ෍

𝑗=1

𝑀

𝑎𝑗 𝑡  𝜂𝑗( Ԧ𝑟) ; 𝑎𝑗 𝑡  needs to be determined

• Galerkin projection (transformation) of the heat conduction equation onto the the ith POD 

mode, 𝜂𝑖( Ԧ𝑟)

න
Ω

𝜕𝜌𝐶𝑇( Ԧ𝑟, 𝑡)

𝜕𝑡
− 𝛻 ⋅ 𝑘𝛻𝑇 Ԧ𝑟, 𝑡 = 𝑃𝑑 Ԧ𝑟, 𝑡 𝜂𝑖( Ԧ𝑟)𝑑Ω

Using the following identities:
𝛻 ⋅ 𝜂𝑖𝑘𝛻𝑇 = 𝛻𝜂𝑖 ⋅ 𝑘𝛻𝑇 + 𝜂𝑖𝛻 ⋅ 𝑘𝛻𝑇 

Gauss′s Law: න
Ω

𝛻 ⋅ 𝜂𝑖𝑘𝛻𝑇 𝑑Ω = න
S

𝜂𝑖𝑘𝛻𝑇 ⋅ 𝑑 Ԧ𝑆

The projection leads to the weak form for the heat condition equation

න
Ω

𝜂𝑖

𝜕𝜌𝐶𝑇

𝜕𝑡
+ 𝛻𝜂𝑖 ⋅ 𝑘𝛻𝑇 𝑑Ω = න

Ω

𝜂𝑖𝑃𝑑 𝑑Ω + න
𝑆

𝜂𝑖𝑘𝛻𝑇 ⋅ 𝑑 Ԧ𝑆



• Galerkin projection (transformation) onto the the ith POD mode, 𝜂𝑖( Ԧ𝑟)

න
Ω

𝜂𝑖

𝜕𝜌𝐶𝑇

𝜕𝑡
+ 𝛻𝜂𝑖 ⋅ 𝑘𝛻𝑇 𝑑Ω = න

Ω

𝜂𝑖𝑃𝑑 𝑑Ω + න
𝑆

𝜂𝑖𝑘𝛻𝑇 ⋅ 𝑑 Ԧ𝑆

• Using                                      ➔  M mode POD model, a set of M-dimensional ODEs

෍

𝑗=1

𝑀

𝑐𝑖,𝑗

𝑑𝑎𝑗

𝑑𝑡
+ ෍

𝑗=1

𝑀

𝑔𝑖,𝑗𝑎𝑗 = 𝑃𝑝𝑜𝑑,𝑖 , 

𝑇 Ԧ𝑟, 𝑡 = ෍

𝑗=1

𝑀

𝑎𝑗 𝑡 𝜂𝑗 Ԧ𝑟
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Example, heat conduction in semiconductor Chips

𝑐𝑖,𝑗 = න
𝛺

𝜌𝐶𝜂𝑖𝜂𝑗 𝑑𝛺, 𝑃𝑝𝑜𝑑,𝑖 = න
𝛺

𝜂𝑖𝑃𝑑 Ԧ𝑥 𝑡 𝑑𝛺 − න
𝛤

𝜂𝑖 −𝑘∇𝑇 ⋅ 𝑑 Ԧ𝑆𝑔𝑖,𝑗 = න
𝛺

𝑘∇𝜂𝑖 ⋅ ∇𝜂𝑗 𝑑𝛺,



Procedure for Constructing the POD Simulation Model

1. Data Collection from direct numerical simulation (DNS) ➔ 𝑄 Ԧ𝑟, 𝑡

2. Solving the 2-point correlation eigenvalue problem for 𝜆𝑗 & 𝜂𝑗( Ԧ𝑟). 

Observe the Eigenvalue spectrum to determine the number of 
modes, M, where 𝜆𝑗 represents the mean squared information 

captured by 𝜂𝑗 Or estimate the least square error based on

𝐸𝑟𝑟𝐿𝑆,𝑀 = ൙෍

𝑖=𝑀+1

𝑁𝑠

𝜆𝑖 ෍

𝑖=1

𝑁𝑠

𝜆𝑖

3. Project the governing equation onto the POD Space (accounting for 
physical principles) ➔ a set of M ODEs for 𝑎𝑗

4. Evaluate the model parameters (coefficients of the ODEs

Implementation of POD in physics simulation

• Solve the ODEs to obtain 𝑎𝑗

• Post processing: the solution 𝑄 Ԧ𝑟, 𝑡 = σ𝑗=1
𝑀 𝑎𝑗 𝑡 𝜂𝑗( Ԧ𝑟)
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