

NSF CyberTraining Winter Workshop

Introduction to Proper Orthogonal Decomposition

concepts, formulation and applications

Part I: Physics Simulations and POD Fundamentals

Ming-Cheng Cheng

Department of Electrical & Computer Engineering Clarkson University, Potsdam, NY 13699

National Science Foundation WHERE DISCOVERIES BEGIN

Supported by NSF OAC-2118079

Applications of POD Simulation Methodology Physics Simulation of Domain Structures with Spatial Details

Physics Simulation of Domain Structures with Spatial Details

Numerical solution with detailed spatial solution in multidimensional structures:

Extremely time consuming. Why?

- Because of a large number of grids (nodes, or degrees of freedom) needed to solve the physical quantity numerically
- Usually, several 100 thousands or millions of nodes for a 3D problem
- Several 100 thousands or millions of coupled differential equations are needed

Mesh of a MOSFET

https://www.researchgate.net/figure/Mesh-of-a-MOSFET-with-a-polysilicon-gate_fig1_267688735

Applications of POD Simulation Methodology

Physics Simulation of Domain Structures with Spatial Details

- Heat Transfer Problems: Heat Transfer Equation
- Nanostructures and Materials: Schrödinger Equation Quantum Wave Equation (Quantum Eigenvalue problem), relevant to DFT simulation
- Electromagnetics and Photonics: Eigenvalue Problem or dynamic Wave Propagation
- Charge Carrier Transport in Semiconductor Devices: Electron/hole transport equations in (6D) phase space
- **Phonon Transport in nanostructures/nanodevices:** Phonon Boltzman Transport Equation (6D) phase space

Fluid dynamics: Navier Stokes Equations, conservation of energy, momentum, and mass

Clarkson

UNIVERSITY

Heat Transfer problems, for example, for semiconductor technology: semiconductor devices, integrated circuits, etc.

$$\rho C_{h} \frac{\partial T(\vec{r},t)}{\partial t} = \nabla \cdot k \nabla T(\vec{r},t) + P_{d}(\vec{r},t) \qquad \begin{array}{c} \text{Clarkson} \\ \text{UNIVERSITY} \\ \text{defy convention} \end{array}$$

Heat Transfer problems: CPUs, GPUs, etc.

Core 17	Core 13	Core 9	Core 4
Core 16	Core 12	Core 8	Core 3
Core 15	Core 11	Core 7	Core 2
Core 14	Core 10	Core 6	Core 1

Tesla Volta GV100 GPU with 13,440 cores, including FP32, FP64, INT32 and Tensor Cores.

Clarkson

UNIVERSITY

Quantum eigenvalue problem, Schrödinger equation

nanostructure, superlattice materials, density functional theory (DFT)

InGaAs/InAIAs Quantum Interband Cascade Laser (IEEE JQE Vol. 40, p. 1663, 2004)

Quantum Cascade Laser Power Supply

Qty 1+ \$5,599.00

Stock #15-957 \$5,599.00

Volume Pricing Request Quote

Si quantum-dot intermediate band solar cell

Nanotechnology, 24, 265401, 2013

Quantum Cascade Laser (QCL) Systems

Clarkson

UNIVERSITY

Quantum eigenvalue problem, Schrödinger equation

nanostructure, superlattice materials, density functional theory (DFT)

$$\nabla \cdot \left[-\frac{\hbar^2}{2m^*} \nabla \psi(\vec{r}) \right] + U(\vec{r})\psi(\vec{r}) = E\psi(\vec{r}),$$

Quantum Dot LEDs for TV and Cell phone Displays

Samsung: Quantum Dot LEDs

Color of Light Depends On Size of Quantum Dot

https://news.samsung.com/global/why-are-quantumdot-displays-so-good

Apple: Hybrid Quantum Dot LED and OLED Displays

https://www.patentlyapple.com/2019/10/apple-won-42-patentstoday-covering-hybrid-quantum-dot-displays-guis-supporting-3dar-models-a-health-study-more.html

Clarkson UNIVERSITY defy convention

Clarkson **Electromagnetics or photonics structures:** Dynamic wave equation, wave UNIVERSITY equation in frequency domain, EM eigenvalue problem)

Dynamic EM Wave equation: $\mu \epsilon \frac{\partial^2 \vec{E}(\vec{r},t)}{\partial t^2} + \mu \sigma \frac{\partial \vec{E}(\vec{r},t)}{\partial t} - \nabla^2 \vec{E}(\vec{r},t) = -\mu \frac{\partial \vec{j}(\vec{r},t)}{\partial t}$

https://en.wikipedia.org/wiki/Electromagnetic radiation

Diffraction of a Gaussian beam on a grating structure simulated using the FDTD (finite-difference timedomain) method.

(https://www.photond.com/products/omnis im/omnisim_applications 06.htm)

Electromagnetic Eigenvalue Problems

Electromagnetic Band Gap (EBG) Structures

$$\nabla^2 \vec{E}(\vec{r}) = -\left(\frac{\omega}{c}\right)^2 \epsilon_r \vec{E}(\vec{r})$$

Bloch Function: $\vec{E}(\vec{r}) = \vec{u}(\vec{r})e^{i\vec{k}\cdot\vec{r}}$

Photonic Crystals

Applications:

- Color selections
- Sensors
- Optical filters
- Photonic Crystal fibers
- Optical computing

https://www.tech-faq.com/what-are-photonic-crystals.html https://en.wikipedia.org/wiki/Photonic_crystal

Charge carrier transport in semiconductor devices (TCAD):

Boltzmann transport equation (BTE), hydrodynamic, energy transport model, drift-diffusion model

M. Shen, T. Zhou, MC Cheng, R. Fithen, *Computer Methods Appl. Mech & EAQ* Vol. 190, 2875-2891, February 16, 2001.

Clarkson

VERSITY

How to develop a very efficient model (compact model) for a structure that requires the solution with spatial details?

Reduce the **numerical degrees of freedom (DoF)** by several orders of magnitude! **How? Projection or Mathematical Transformation**

Inner Product of vectors:

 $\vec{a} \cdot \vec{b} = |a||b|cos\theta = \sum_{i=1}^{M} a_i b_i$ = $a_x b_x + a_y b_y + a_z b_z$ (in real space)

L2 Norm:
$$|b| = \sqrt{\sum_{i=1}^{M} b_i^2}$$

Projection of \vec{a} onto \vec{b} :

Inner Product of functions:

$$f \cdot g = \int_{a}^{b} f(x)g(x)dx$$

L2 Norm:
$$|g| = \sqrt{\int_a^b g(x)^2 dx}$$

Projection of f onto g : $\frac{f \cdot g}{|g|}$

POD: Maximizing the average of (Projection)^2

• A popular projection, Fourier series (frequency domain projection)

$$f(t) = \sum_{n=1}^{M} a_n e^{jn\omega t} = \sum_{n=1}^{M} a_n \eta_n(t), \text{ or in space } f(x) = \sum_{n=1}^{M} a_n e^{jnkx} = \sum_{n=1}^{M} a_n \eta_n(x)$$

where the basis functions (or modes) $e^{jn\omega t}$ or e^{jnkx} are effective only for **periodic** functions; $\omega = \frac{2\pi}{T}$ and $k = 2\pi/\lambda$

 Spherical Harmonic Expansion: Legendre Polynomials

 Cylindrical harmonic expansion: Bessel Functions

Clarkson

convention

https://opg.optica.org/oe/fulltext.cfm?uri=oe-18-24-25299&id=208252

 Instead of assuming the functions for the modes, a learning algorithm can be used to extract the modes.

The most commonly used projection-based learning methods:

- PCA: Principal component analysis
- SVD: Singular value decomposition
- The machine learning methods only provide statistical models to minimize the statistical variation in the prediction
 - Offer no guideline on physical principles in the governing equation for the spatial variation and/or dynamic evolution for the physical quantity.
 - Only work well for prediction of one-to-one correspondence relation
 - Not accurate for dynamic (initial value) problems
 - Poor performance for sudden change in physical quantity
 - Work well for interpolation but poorly for extrapolation

Effective projections of both the data and the governing equation onto the POD space

$$Q(\vec{r},t) = \sum_{j=1}^{M} a_j(t) \eta_j(\vec{r})$$

• POD finds a mode $\eta(\vec{r})$ that maximizes its mean square inner product (projection) with the solution data

$$\left| \left[\frac{Q \cdot \eta}{|\eta|} \right]^2 \right\rangle = \left| \left(\left(\int_{\Omega} Q(\vec{r}, t) \eta(\vec{r}) d\Omega \right)^2 \right) \right/ \int_{\Omega} \eta(\vec{r})^2 d\Omega \right|$$

 $\langle \rangle$ indicate the average of the data collected over numerical observations (or snapshots in time or over the samples) accounting for the parametric variations.

• This maximization process leads to an eigenvalue problem of 2-point correlation of data

$$Q(\vec{r},t) \otimes Q(\vec{r}',t) \eta(\vec{r}') d\Omega' = \lambda \eta(\vec{r}),$$

which offers a minimum least square error with a smallest number of modes (DoF) if the training is properly done (i.e., if the data quality is sufficient).

Clarkson

Continuous eigenvalue problem

 $\int_{\Omega'} \langle Q(\vec{r},t) \otimes Q(\vec{r}',t) \rangle \eta(\vec{r}') d\Omega' = \lambda \eta(\vec{r}),$

Q data sets are collected from detailed numerical simulation (DNS)

 $\mathsf{Discretization}$ $\langle Q(\vec{r},t) \otimes Q(\vec{r}',t) \rangle = \frac{1}{N_s} \sum_{j=1}^{N_s} \vec{Q}(\vec{r},t_j) \otimes \vec{Q}(\vec{r}',t_j) = \frac{1}{N_s} \sum_{j=1}^{N_s} \vec{Q}(t_j) \vec{Q}^T(t_j)$ for each sample: $\vec{Q} \otimes \vec{Q} = \vec{Q} \vec{Q}^T = \begin{bmatrix} Q_1 \\ Q_2 \\ \vdots \\ Q_{N_r} \end{bmatrix} [Q_1 Q_2 \dots Q_{N_r}] = \begin{bmatrix} Q_1 Q_1 & \cdots & Q_1 Q_j & \cdots & Q_1 Q_{N_r} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ Q_i Q_1 & \cdots & Q_i Q_j & \cdots & Q_i Q_{N_r} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ Q_{N_r} Q_1 & \cdots & Q_{N_r} Q_j & \cdots & Q_{N_r} Q_{N_r} \end{bmatrix},$

A matrix dimension of $N_r \times N_r$ may be too large to manage in 3D problems for a dense matrix. The method of snapshots will be introduced later to minimize the computational effort

Clarkson

Example, heat conduction in semiconductor Chips $Q(\vec{r},t) = T(\vec{r},t) = \sum_{j=1}^{M} a_j(t) \eta_j(\vec{r}); \quad a_j(t) \text{ needs to be determined}$ **Heat conduction equation:** $\frac{\partial \rho CT(\vec{r},t)}{\partial t} - \nabla \cdot k \nabla T(\vec{r},t) = P_d(\vec{r},t)$

$$\int_{\Omega} \left(\frac{\partial \rho CT(\vec{r},t)}{\partial t} - \nabla \cdot k \nabla T(\vec{r},t) = P_d(\vec{r},t) \right) \eta_i(\vec{r}) d\Omega$$

Using the following identities:

$$\nabla \cdot (\eta_i k \nabla T) = \nabla \eta_i \cdot k \nabla T + \eta_i \nabla \cdot k \nabla T$$

Gauss's Law:
$$\int_{\Omega} \nabla \cdot (\eta_i k \nabla T) d\Omega = \int_{S} \eta_i k \nabla T \cdot d\vec{S}$$

The projection leads to the weak form for the heat condition equation

$$\int_{\Omega} \left(\eta_i \frac{\partial \rho CT}{\partial t} + \nabla \eta_i \cdot k \nabla T \right) d\Omega = \int_{\Omega} \eta_i P_d \, d\Omega + \int_S \eta_i k \nabla T \cdot d\vec{S}$$

Clarkson

Example, heat conduction in semiconductor Chips

• Galerkin projection (transformation) onto the the *i*th POD mode, $\eta_i(\vec{r})$

$$\int_{\Omega} \left(\eta_i \frac{\partial \rho CT}{\partial t} + \nabla \eta_i \cdot k \nabla T \right) d\Omega = \int_{\Omega} \eta_i P_d \, d\Omega + \int_S \eta_i k \nabla T \cdot d\vec{S}$$

• Using $T(\vec{r},t) = \sum_{j=1}^{M} a_j(t)\eta_j(\vec{r}) \Rightarrow M$ mode POD model, a set of *M*-dimensional ODEs $\sum_{j=1}^{M} c_{i,j} \frac{da_j}{dt} + \sum_{j=1}^{M} g_{i,j}a_j = P_{pod,i},$ $c_{i,j} = \int_{\Omega} \rho C \eta_i \eta_j \, d\Omega, \quad g_{i,j} = \int_{\Omega} k \nabla \eta_i \cdot \nabla \eta_j \, d\Omega, \quad P_{pod,i} = \int_{\Omega} \eta_i P_d(\vec{x}, t) \, d\Omega - \int_{\Gamma} \eta_i (-k \nabla T) \cdot d\vec{S}$

Procedure for Constructing the POD Simulation Model

- 1. Data Collection from direct numerical simulation (DNS) $\rightarrow Q(\vec{r}, t)$
- 2. Solving the 2-point correlation eigenvalue problem for $\lambda_j \& \eta_j(\vec{r})$. Observe the Eigenvalue spectrum to determine the number of modes, *M*, where λ_j represents the mean squared information captured by η_j Or estimate the least square error based on

$$Err_{LS,M} = \sqrt{\sum_{i=M+1}^{N_S} \lambda_i / \sum_{i=1}^{N_S} \lambda_i}$$

- 3. Project the governing equation onto the POD Space (accounting for physical principles) \rightarrow a set of *M* ODEs for a_j
- 4. Evaluate the model parameters (coefficients of the ODEs

Implementation of POD in physics simulation

• Solve the ODEs to obtain a_j

• Post processing: the solution $Q(\vec{r}, t) = \sum_{j=1}^{M} a_j(t) \eta_j(\vec{r})$

Clarkson