

NSF CyberTraining Winter Workshop

Introduction to Proper Orthogonal Decomposition

concepts, formulation and applications

Part I: Physics Simulations and POD Fundamentals

Ming-Cheng Cheng

Department of Electrical & Computer Engineering Clarkson University, Potsdam, NY 13699

National Science Foundation WHERE DISCOVERIES BEGIN

Supported by NSF OAC-2118079

Applications of POD Simulation Methodology Physics Simulation of Domain Structures with Spatial Details

Numerical solution with detailed spatial solution in multidimensional structures:

Extremely time consuming. Why?

- Because of a large number of grids (nodes, or degrees of freedom) needed to solve the physical quantity numerically
- Usually, several 100 thousands or millions of nodes for a 3D problem
- Several 100 thousands or millions of coupled differential equations are needed

Mesh of a MOSFET

https://www.researchgate.net/figure/Mesh-of-a-MOSFET-with-a-polysilicon-gate_fig1_267688735

Applications of POD Simulation Methodology

Physics Simulation of Domain Structures with Spatial Details

A few examples in different areas of research and industrial applications:

- **Heat Transfer Problems:** Heat Transfer Equation
- **Nanostructures and Materials:** Schrödinger Equation Quantum Wave Equation **(**Quantum Eigenvalue problem), relevant to DFT simulation
- **Electromagnetics and Photonics:** Eigenvalue Problem or dynamic Wave **Propagation**
- **Charge Carrier Transport in Semiconductor Devices:** Electron/hole transport equations in (6D) phase space
- **Phonon Transport in nanostructures/nanodevices:** Phonon Boltzman Transport Equation (6D) phase space

Heat Transfer problems, for example, for semiconductor technology: semiconductor devices, integrated circuits, etc.

$$
\rho C_h \frac{\partial T(\vec{r},t)}{\partial t} = \nabla \cdot k \nabla T(\vec{r},t) + P_d(\vec{r},t)
$$

 $C1$

Heat Transfer problems: CPUs, GPUs, etc.

Tesla Volta GV100 GPU with 13,440 cores, including FP32, FP64, INT32 and Tensor Cores. 5

Quantum eigenvalue problem, Schrödinger equation

nanostructure, superlattice materials, density functional theory (DFT)

InGaAs/InAlAs Quantum Interband Cascade Laser (IEEE JQE Vol. 40, p. 1663, 2004)

Quantum Cascade Laser Power Supply

Stock #15-957 \$5,599.00

 Qty 1+

\$5,599.00

Volume Pricing Request Quote

Si quantum-dot intermediate band solar cell

Nanotechnology, 24, 265401, 2013

Clarkson

UNIVERSITY

defy convention

Quantum Cascade Laser (OCL) Systems

Quantum eigenvalue problem, Schrödinger equation

nanostructure, superlattice materials, density functional theory (DFT)

$$
\nabla \cdot \left[-\frac{\hbar^2}{2m^*} \nabla \psi(\vec{r}) \right] + U(\vec{r}) \psi(\vec{r}) = E \psi(\vec{r}),
$$

Quantum Dot LEDs for TV and Cell phone Displays

Samsung: Quantum Dot LEDs

Color of Light Depends On Size of Quantum Dot

Apple: Hybrid Quantum Dot LED and OLED Displays

7 https://www.patentlyapple.com/2019/10/apple-won-42-patentstoday-covering-hybrid-quantum-dot-displays-guis-supporting-3dar-models-a-health-study-more.html

Clarkson **Electromagnetics or photonics structures:** Dynamic wave equation, wave UNIVERSITY defy convention equation in frequency domain, EM eigenvalue problem)

• Dynamic EM Wave equation: $\mu \epsilon \frac{\partial^2 \vec{E}(\vec{r},t)}{\partial t^2}$ $\frac{E(Y,t)}{\partial t^2} + \mu \sigma$ $\partial \vec{E}(\vec{r},t)$ $\frac{d\vec{r}}{dt} - \nabla^2 \vec{E}(\vec{r}, t) = -\mu$ $\partial\vec\jmath(\vec r,t$ ∂t

https://en.wikipedia.org/wiki/Electromagnetic _radiation

Diffraction of a Gaussian beam on a grating structure simulated using the FDTD (finite-difference timedomain) method.

(https://www.photond.com/products/omnis im/omnisim_applications_06.htm)

Electromagnetic Eigenvalue Problems

Electromagnetic Band Gap (EBG) Structures

$$
\nabla^2 \vec{E}(\vec{r}) = -\left(\frac{\omega}{c}\right)^2 \epsilon_r \vec{E}(\vec{r})
$$

Bloch Function: $\vec{E}(\vec{r}) = \vec{u}(\vec{r})e^{i\vec{k}\cdot\vec{r}}$

Photonic Crystals

Applications:

- Color selections
- **Sensors**
- **Optical filters**
- **Photonic Crystal fibers**
- **Optical computing**

<https://www.tech-faq.com/what-are-photonic-crystals.html> https://en.wikipedia.org/wiki/Photonic_crystal

Charge carrier transport in semiconductor devices (TCAD):

Boltzmann transport equation (BTE), hydrodynamic, energy transport model, drift-diffusion model

M. Shen, T. Zhou, MC Cheng, R. Fithen, *Computer Methods Appl. Mech & Eng*, Vol. 10190, 2875-2891, February 16, 2001.

Clarkson

IVERSITY

How to develop a very efficient model (compact model) for a structure that requires the solution with spatial details?

Reduce the **numerical degrees of freedom (DoF)** by several orders of magnitude! **How? Projection or Mathematical Transformation**

Inner Product of vectors:

 $\vec{a} \cdot \vec{b} = |a||b|cos\theta = \sum_{i=1}^{M} a_i b_i$ $= a_x b_x + a_y b_y + a_z b_z$ (in real space)

$$
\textbf{L2 Norm:} \ |b| = \sqrt{\sum_{i=1}^{M} b_i^2}
$$

Projection of \vec{a} onto \vec{b} :

Inner Product of functions:

$$
f \cdot g = \int_a^b f(x)g(x)dx
$$

L2 Norm:
$$
|g| = \sqrt{\int_a^b g(x)^2 dx}
$$

\nProjection of f onto $g: \frac{f \cdot g}{|g|}$

POD: Maximizing the average of (Projection)^2

• A popular projection, **Fourier series** (frequency domain projection)

$$
f(t) = \sum_{n=1}^{M} a_n e^{jn\omega t} = \sum_{n=1}^{M} a_n \eta_n(t), \text{ or in space } f(x) = \sum_{n=1}^{M} a_n e^{jnkx} = \sum_{n=1}^{M} a_n \eta_n(x)
$$

where the basis functions (or modes) $e^{jn\omega t}$ or $e^{j n k x}$ are effective only for **periodic** functions; $\omega = \frac{2\pi}{T}$ \overline{T} and $k = 2\pi/\lambda$

• Spherical Harmonic Expansion: **Legendre Polynomials**

• Cylindrical harmonic expansion: **Bessel Functions**

Clarkson

https://opg.optica.org/oe/fulltext.cfm?uri=oe-18-24-25299&id=208252

• Instead of assuming the functions for the modes, a learning algorithm can be used to extract the modes.

The most commonly used projection-based learning methods:

- **PCA:** Principal component analysis
- **SVD:** Singular value decomposition
- The machine learning methods only provide statistical models to minimize the statistical variation in the prediction
	- Offer no guideline on physical principles in the governing equation for the spatial variation and/or dynamic evolution for the physical quantity.
	- Only work well for prediction of one-to-one correspondence relation
	- Not accurate for dynamic (initial value) problems
	- Poor performance for sudden change in physical quantity
	- **E** Work well for interpolation but poorly for extrapolation

Effective projections of both the data and the governing equation onto the POD space

• POD finds a mode $\eta(\vec{r})$ that maximizes its mean square inner product (projection) with the solution data

$$
\left(\left[\frac{Q \cdot \eta}{|\eta|}\right]^2\right) = \left\langle \left(\int_{\Omega} Q(\vec{r}, t) \eta(\vec{r}) d\Omega\right)^2 \right\rangle / \int_{\Omega} \eta(\vec{r})^2 d\Omega
$$

 $\langle \rangle$ indicate the average of the data collected over numerical observations (or snapshots in time or over the samples) **accounting for the parametric variations.**

• This maximization process leads to an eigenvalue problem of 2-point correlation of data

$$
\int_{\Omega'} \langle Q(\vec{r},t) \otimes Q(\vec{r}',t) \rangle \eta(\vec{r}') d\Omega' = \lambda \eta(\vec{r}),
$$

which offers a minimum least square error with a smallest number of modes (DoF) **if the training is properly done (i.e., if the data quality is sufficient)**.

Clarkson

defy convention

Continuous eigenvalue problem

 $\overline{1}$ Ω' $Q(\vec{r},t) \otimes Q(\vec{r}',t) \rangle \eta(\vec{r}') d\Omega' = \lambda \eta(\vec{r}),$

Q data sets are collected from detailed numerical simulation (DNS)

Discretization $Q(\vec{r},t) \otimes Q(\vec{r}',t)$ = 1 $N_{\rm s}$ \sum $j=1$ N_{S} $\vec{Q}\big(\vec{r},t_j\big) \otimes \vec{Q}\big(\vec{r}^{\,\prime},t_j\big)=$ 1 $N_{\rm s}$ \sum $j=1$ $N_{\rm S}$ $\vec{Q}(t_j)\,\vec{Q}^T(t_j$ for each sample: $\;\vec{Q}\otimes\vec{Q}=\vec{Q}\;\vec{Q}^T=0\;$ Q_1 Q_{2} $\ddot{\cdot}$ $\overline{Q_{N_r}}$ $Q_1 Q_2 ... Q_{N_r}$ = $Q_1 Q_1$ … $Q_1 Q_j$ … $Q_1 Q_{N_r}$ \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{k} $Q_i Q_1$ … $Q_i Q_j$ … $Q_i Q_{N_r}$ \mathbf{i} , \mathbf{j} , \mathbf{k} $Q_{N_r} Q_1$ … $Q_{N_r} Q_j$ … $Q_{N_r} Q_{N_r}$,

A matrix dimension of *N^r* x *N^r* may be too large to manage in 3D problems for a dense matrix. The method of snapshots will be introduced later to minimize the computational effort

Clarkson

defy convention

Example, heat conduction in semiconductor Chips Heat conduction equation: $\frac{\partial \rho CT(\vec{r}, t)}{\partial t}$ $\frac{\partial^2 f}{\partial t} - \nabla \cdot k \nabla T(\vec{r}, t) = P_d(\vec{r}, t)$ $Q(\vec{r},t) = T(\vec{r},t) = \sum$ $j=1$ \boldsymbol{M} $a_j(t)\,\eta_{\,j}(\vec{r})$; $\quad a_j(t)$ needs to be determined

• **Galerkin projection** (transformation) of the heat conduction equation onto the the *i*th POD mode, $\eta_i(\vec{r})$

$$
\int_{\Omega} \left(\frac{\partial \rho C T(\vec{r}, t)}{\partial t} - \nabla \cdot k \nabla T(\vec{r}, t) \right) = P_d(\vec{r}, t) \right) \eta_i(\vec{r}) d\Omega
$$

Using the following identities:

$$
\underbrace{\nabla \cdot (\eta_i k \nabla T)}_{\Omega} = \nabla \eta_i \cdot k \nabla T + \eta_i \overline{\nabla} \cdot k \nabla T
$$
\nGauss's Law:

\n
$$
\int_{\Omega} \overline{\nabla \cdot (\eta_i k \nabla T)} d\Omega = \int_{S} \eta_i k \nabla T \cdot d\overline{S}
$$
\n
$$
\text{SwV} d\lambda
$$

The projection leads to the weak form for the heat condition equation

$$
\int_{\Omega} \left(\eta_i \frac{\partial \rho C T}{\partial t} + \nabla \eta_i \cdot k \nabla T \right) d\Omega = \int_{\Omega} \eta_i P_d \ d\Omega + \int_{S} \eta_i k \nabla T \cdot d\vec{S}
$$

Clarkson

defy convention

Example, heat conduction in semiconductor Chips

• Galerkin projection (transformation) onto the the *th POD mode,* $\eta_i(\vec{r})$

 Ω

$$
\int_{\Omega} \left(\eta_i \frac{\partial \rho C T}{\partial t} + \nabla \eta_i \cdot k \nabla T \right) d\Omega = \int_{\Omega} \eta_i P_d \, d\Omega + \int_{S} \eta_i k \nabla T \cdot d\vec{S}
$$

• Using $T(\vec{r},t) = \sum a_j(t)\eta_j(\vec{r})$ \rightarrow *M* mode POD model, a set of *M*-dimensional ODEs \sum $j=1$ \boldsymbol{M} $c_{i,j}$ da_j $\frac{1}{dt}+\sum$ $j=1$ \boldsymbol{M} $g_{i,j}a_j = P_{pod,i},$ $j=1$ \boldsymbol{M} $a_j(t)\eta_j(\vec{r})$ $c_{i,j} = \vert$ $\rho C \eta_i \eta_j d\Omega$, $g_{i,j} = |k \nabla \eta_i \cdot \nabla \eta_j d\Omega$, $P_{pod,i} = |k \nabla \eta_i d\Omega_j d\Omega_j d\Omega$ $\eta_i P_d(\vec{x}, t) d\Omega$ $g_{i,j} = \int k \nabla \eta_i \cdot \nabla \eta_j d\Omega$, $P_{pod,i} = \int \eta_i P_d(\vec{x}, t) d\Omega - \int \eta_i (-k \nabla T) \cdot d\vec{S}$ $k\nabla\eta_i\cdot\nabla\eta_j\,d\varOmega$,

 Ω

 Ω

 Γ

Procedure for Constructing the POD Simulation Model

- 1. Data Collection from direct numerical simulation (DNS) $\rightarrow Q(\vec{r}, t)$
- 2. Solving the 2-point correlation eigenvalue problem for $\lambda_j \& \eta_j(\vec{r})$. Observe the Eigenvalue spectrum to determine the number of modes, M, where λ_j represents the mean squared information captured by η_i Or estimate the least square error based on

$$
Err_{LS,M} = \sqrt{\sum_{i=M+1}^{N_S} \lambda_i / \sum_{i=1}^{N_S} \lambda_i}
$$

- 3. Project the governing equation onto the POD Space (accounting for physical principles) \rightarrow a set of *M* ODEs for a_i
- 4. Evaluate the model parameters (coefficients of the ODEs

Implementation of POD in physics simulation

• Solve the ODEs to obtain a_i

• Post processing: the solution $Q(\vec{r}, t) = \sum_{j=1}^{M} a_j(t) \eta_j(\vec{r})$

Clarkson