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Three fundamental PDEs and solutions



2

Vibration, standing waves in a string. The fundamental and the first 

5 overtones in the harmonic series.

https://en.wikipedia.org/wiki/Standing_wave
https://en.wikipedia.org/wiki/Fundamental_frequency
https://en.wikipedia.org/wiki/Overtone
https://en.wikipedia.org/wiki/Harmonic_series_(music)


Common but Challenging PDEs

 Diffusion equation
𝛻 ⋅ 𝐷𝛻𝐶 + 𝑆 = 0

 Solid-Mechanics
𝛻 ⋅ 𝜌𝑢𝑢𝑇 = −𝛻𝑃 + 𝛻 ⋅ 𝜏 + 𝜌𝑔

 Navier-Stokes
𝜕 𝜌𝑢

𝜕𝑡
+ 𝛻 ⋅ 𝜌𝑢 ⊗ 𝑢 + 𝛻𝑃 = 𝜇𝛻2𝑢 +

𝜇

3
𝛻 𝛻 ⋅ 𝑢 + 𝜌𝑔

 Schrodinger

𝛻 ⋅ −
ℎ2

2𝑚∗
𝛻𝜓 Ԧ𝑟 + 𝑈 Ԧ𝑟 𝜓 Ԧ𝑟 = 𝐸 𝜓(Ԧ𝑟)

 Dynamics Electromagnetic wave equation
𝜇𝜖𝜕2𝐸 Ԧ𝑟, 𝑡

𝜕𝑡2
+
𝜇𝜎𝜕𝐸 Ԧ𝑟, 𝑡

𝜕𝑡
− 𝛻2𝐸 Ԧ𝑟, 𝑡 = −

𝜇𝜕Ԧ𝑗 Ԧ𝑟, 𝑡

𝜕𝑡

 Boltzmann transport equation
𝜕𝑓

𝜕𝑡
+ 𝐯 ⋅ 𝛻𝑓 +

𝑞𝐄

𝐡
⋅ 𝛻𝑘 𝑓 =

𝜕𝑓

𝜕𝑡
𝐶

3
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Analytically: 
• Method of characteristic
• Separation of variables
• Fourier analysis----sin 𝑥 , cos 𝑥 , Bessel’s function, 

Legendre, ..
• Eigenfunction expansion
• Problems:

• cannot deal with complicated geometry
• May not converge with finite terms
• Hard to deal with nonlinear

Numerically: 
Finite difference method (FDM)
Finite element method (FEM)
Finite volume method
Reduce order method

Combination of analytical and numerical methods

How to solve PDEs?
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• Finite Element Method (FEM)

• How to solve PDEs using FEM?

• Numerical interpolation: shape functions

• Domain discretization: mesh

• Weak and strong forms of PDE 

• Linear or nonlinear system solver

• Analytic solutions are possible for simple and special (idealized) 
cases only.

• To make use of the nature of the equations, different methods are 
used to solve different classes of PDEs.

• The methods discussed here are based on the finite element
technique.

• Methods other than FEM:  FDM, Spectral Method, FVM, …

How to solve PDEs?



Summary of FEM Process
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Domain 
Discretization

Boundary 
Conditions

PDE in 
Strong Form

FEM Mesh:  elements

PDE in weak 
forms

Shape 
Functions

Assemble 
Galerkin
system of 
equations

Solve for 
Nodal 
Values

Post-process



Generalization of FEM

 Divide geometry into simple elements

 Finding polynomial approximation on each 
element: unknow 𝑎0, 𝑎1, 𝑎2, ⋯ , 𝑎𝑛
 1D: ሚ𝐶 𝑥 = 𝑎0 +𝑎1𝑥 + 𝑎2𝑥

2 +⋯

 2D: ሚ𝐶 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥𝑦 +⋯

 3D: ሚ𝐶 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 +⋯

 Continuous across elements

 PDE → System of equations → Solve nodal values

7



Elements

 Divide geometry into simple elements

 Elements have nodes

 Elements include line segments in 1D

 Elements include triangular or quadrilateral mesh 
in 2D 

 Elements include tetrahedrons or hexahedrons in 
3D
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Elements

 Each element has its own coefficients: 

 One for each node: 𝑎0, 𝑎1, 𝑎2, ⋯ , 𝑎𝑛

 Construct shape functions, meanwhile get 
continuous piecewise polynomial between 
elements: 

9

Write solution 
in terms of 
values at nodes

Adjacent 
elements 
share nodes

Automatically 
continuous 
between elements

Element  Element Element Element

Element Element Element

Element        Element



Construct shape functions in 1D

 Construct shape functions by writing solutions 
in terms of functions’ values 𝐶1 𝐶2
Consider single element             𝑥1 𝑥2

2 nodes in 1D: ሚ𝐶 𝑥 = 𝑎0 +𝑎1𝑥

Find 𝑎0 and 𝑎1 by solving 

C1 = ሚ𝐶 𝑥1 = 𝑎0 +𝑎1𝑥1
𝐶2 = ሚ𝐶 𝑥2 = 𝑎0 +𝑎1𝑥2

Thus, 
𝑎0
𝑎1

=
1 𝑥1
1 𝑥2

−1 𝐶1
𝐶2

=
1

𝑥2−𝑥1

𝑥2 −𝑥1
−1 1

𝐶1
𝐶2

.

That is: 

ሚ𝐶 𝑥 =
𝐶1𝑥2 − 𝐶2𝑥1
𝑥2 − 𝑥1

+
−𝐶1 + 𝐶2
𝑥2 − 𝑥1

𝑥.

ሚ𝐶 𝑥 =
𝑥2 − 𝑥

𝑥2 − 𝑥1
𝐶1 +

−𝑥1 + 𝑥

𝑥2 − 𝑥1
𝐶2.
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Construct shape functions in 1D

 Construct shape functions by writing solutions in 
terms of functions’ values 𝐶1 𝐶2
 For a single element             𝑥1 𝑥2

ሚ𝐶 𝑥 =
𝑥2 − 𝑥

𝑥2 − 𝑥1
𝐶1 +

−𝑥1 + 𝑥

𝑥2 − 𝑥1
𝐶2.

ሚ𝐶 𝑥 = 𝑁1(𝑥)𝐶1 +𝑁2(𝑥)𝐶2.

 Shape functions—AKA interpolation functions, basis 
functions for the solution: 

𝑁1 𝑥 =
𝑥2 − 𝑥

𝑥2 − 𝑥1
, 𝑁2 𝑥 =

−𝑥1 + 𝑥

𝑥2 − 𝑥1

 Solution is a linear combination of shape functions

ሚ𝐶 𝑥 = 𝑁1 𝑥 𝐶1 +𝑁2 𝑥 𝐶2 =෍

𝑖=1

2

𝑁𝑖𝐶𝑖 = 𝑁 ⋅ Ԧ𝐶 .
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Exa 1: Interpolation 𝐶 𝑥 = sin 𝑥 , 0 ≤ 𝑥 ≤ 5
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ሚ𝐶 𝑥 =

𝐶1𝑁1 𝑥 + 𝐶2𝑁2 𝑥 , 0 ≤ 𝑥 ≤ 1.5

𝐶1𝑁1 𝑥 + 𝐶2𝑁2 𝑥 , 1.5 ≤ 𝑥 ≤ 3
⋮

𝐶1𝑁1 𝑥 + 𝐶2𝑁2 𝑥 , 4.875 ≤ 𝑥 ≤ 5

𝑥0 = 0 𝑥1 = 1.5 𝑥2 = 3 𝑥3 = 4Element 1 Element 2

ሚ𝐶 𝑥 =෍

𝑖

𝑁𝑖𝐶𝑖 = 𝑁 ⋅ Ԧ𝐶Approximation includes all spatial dependence:
• Depend on coordinates of nodes
• 𝑁𝑖 = 1 at node 𝑖, 𝑁𝑖 = 0 at all other nodes
• Zero outside their element 



Exa 1: Interpolation--higher order shape functions
 Order 1                     Order 2                 Order 3

Linear lagrange Quadratic line segment    Cubic line segment     
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𝑥1 𝑥2𝑥1 𝑥2 𝑥1 𝑥3𝑥3 𝑥4
𝑥2

1 1 1𝑁2(𝑥)
𝑁1(𝑥)𝑁2(𝑥)

𝑁1(𝑥)

𝑁2(𝑥)
𝑁3(𝑥)

N3(𝑥)

𝑁4(𝑥)

𝑁1(𝑥)

𝐶1 𝐶2 𝐶3
𝑥1 𝑥2 𝑥3
3 nodes, 3 DOF
ሚ𝐶 𝑥 = 𝑎0 +𝑎1𝑥 + 𝑎2𝑥

2

𝐶1 𝐶2 𝐶3 𝐶4
𝑥1 𝑥2 𝑥3 𝑥4
4 nodes, 4 𝐷𝑂𝐹
ሚ𝐶 𝑥 = 𝑎0 +𝑎1𝑥 + 𝑎2𝑥

2 + 𝑎3𝑥
3

𝐶1 𝐶2
𝑥1 𝑥2
2 nodes, 2 DOF
ሚ𝐶 𝑥 = 𝑎0 +𝑎1𝑥



Construct shape functions in 2D

 Construct shape functions by writing solutions 
in terms of functions’ values

Consider single element

3 nodes in 2D: ሚ𝐶 𝑥, 𝑦 = 𝑎0 +𝑎1𝑥 + 𝑎2𝑦

Find 𝑎0, 𝑎1 and 𝑎2 (3 degree of freedom DOF):
C1 = ሚ𝐶 𝑥1, 𝑦1 = 𝑎0 +𝑎1𝑥1 + 𝑎2𝑦1
𝐶2 = ሚ𝐶 𝑥2, 𝑦2 = 𝑎0 +𝑎1𝑥2 + 𝑎2𝑦2
𝐶3 = ሚ𝐶 𝑥3, 𝑦3 = 𝑎0 +𝑎1𝑥3 + 𝑎2𝑦3

𝑎0
𝑎1
𝑎2

=
1
1

𝑥1
𝑥2

1 𝑥3

𝑦1
𝑦2
𝑦3

−1 𝐶1
𝐶2
𝐶3

=
1

𝑥2𝑦3+𝑥1𝑦2+𝑥3𝑦1−𝑥2𝑦1−𝑥3𝑦2−𝑥1𝑦3

𝑥2𝑦3 − 𝑥3𝑦2 𝑥3𝑦1−𝑥1𝑦3
𝑦2 − 𝑦3 𝑦3 − 𝑦1

𝑥1𝑦2 − 𝑥2𝑦1
𝑦1 − 𝑦2

𝑥3 − 𝑥2 𝑥1 − 𝑥3 𝑥2 − 𝑥1

𝐶0
𝐶1
𝐶2

.

Collect 𝐶1, 𝐶2, & 𝐶3 to get shape functions:  
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Node 1 𝑥1, 𝑦1

Node 2 𝑥2, 𝑦2 Node 3 𝑥3, 𝑦3

ሚ𝐶 𝑥 = 𝑁1 𝑥, 𝑦 𝐶1 + 𝑁2 𝑥, 𝑦 𝐶2 + 𝑁3 𝑥, 𝑦 𝐶3 =෍

𝑗

𝑁𝑗𝐶𝑗 = 𝑁 ⋅ Ԧ𝐶 .



Summary of FEM Process
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Domain 
Discretization

Boundary 
conditions

PDE in 
Strong Form

FEM Mesh

PDE in Weak 
Form

Shape 
Functions

Assemble 
Galerkin
System of 
Equations

Solve for 
Nodal 
Values

Post-process



Exa 2: Steady state heat eqn

 Strong form of PDE:
𝛻 ⋅ k𝛻C − S = 0 on Ω

 Step 1. Use ෨C ≈ C, now PDE with residual R
𝛻 ⋅ k𝛻෨C − S = R on Ω

 Step 2. Want weighted error 
∫w𝛻 ⋅ k𝛻෨C − wS 𝑑𝛺 = 0.

 Step 3. Use Cal III identity: 

𝛻 𝑎𝑏 = 𝛻𝑎 ⋅ 𝑏 + 𝑎𝛻𝑏 for 𝑎 = 𝑤, 𝑏 = k𝛻෨C

∫ 𝛻 ⋅ w k 𝛻෨C − 𝛻𝑤 ⋅ k 𝛻෨C − w S 𝑑𝛺 = 0.

 Step 4. Apply Divergence Theorem 

∫ 𝛻 ⋅ w k 𝛻෨C = ර
Ω

ො𝑛Ω ⋅ 𝑤 k 𝛻 ෨C 𝑑Ω

 Step 5. Weak form of diffusion equation

Ωׯ ො𝑛Ω ⋅ 𝑤 k 𝛻 ෨C 𝑑Ω − ∫ 𝛻𝑤 ⋅ k 𝛻 ෨C − 𝑤𝑆𝑑Ω = 0. 16

Derivative twice

Derivative once

Weaker 
constraints on 
solution

Diffusion eqn
k

𝜕2𝐶

𝜕𝑥2
+

𝜕2𝐶

𝜕𝑦2
− 𝑆 = 0 𝑖𝑓 𝑘 is constant



Exa 2: Boundary Condition

 Assume a tank with no leaks, i.e. zero flux BC
ො𝑛Ω ⋅ 𝑘 𝛻𝐶 = 0.

 Weak form without BC

Ωׯ ො𝑛Ω ⋅ 𝑤 k 𝛻 ෨C 𝑑Ω − ∫ 𝛻𝑤 ⋅ k 𝛻 ෨C − 𝑤𝑆𝑑Ω = 0.

 Weak form with no flux 

 Other possible BCs:
Dirichlet, Neumann, Robin, Mixed, Cauchy

Fixed values          Flux/Natural 
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𝐷
𝜕2𝐶

𝜕𝑥2
+

𝜕2𝐶

𝜕𝑦2
− 𝑆 = 0 𝑖𝑓 𝐷 is constant

𝛻 ⋅ D𝛻C − S = 0 on Ω

k∫
𝜕𝑤

𝜕𝑥

𝜕෩C

𝜕𝑥
+ 

𝜕𝑤

𝜕𝑦

𝜕෩C

𝜕𝑦
+ 𝑤𝑆𝑑 Ω = 0∫ 𝛻𝑤 ⋅ k 𝛻෨C + 𝑤𝑆𝑑Ω = 0.



Exa 2: Galerkin Finite-Element Method

 Galerkin: 𝑤 Ԧ𝑥 = 𝑁𝑖 for all 𝑖 (all basis functions)

 Recall interpolation when given nodal values Ԧ𝐶 :

∫ 𝛻𝑁𝑖 ⋅ 𝑘෍

𝑗

𝐶𝑗𝛻𝑁𝑗 + 𝑁𝑖𝑆𝑑Ω = 0

∫ k෍

𝑗

𝛻𝑁𝑖 ⋅ 𝛻𝑁𝑗 𝑑Ω 𝐶𝑗 = −∫𝑁𝑖𝑆𝑑Ω

In Matrix Form                 𝐾 Ԧ𝐶 Ԧ𝑆

𝐾 Ԧ𝐶 = Ԧ𝑆

 Calculate integral as sum of integral of each element:

∫ 𝑑Ω = σ∫ 𝑑Ω𝑒𝑙𝑒𝑚𝑒𝑛𝑡
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∫ 𝛻𝑤 ⋅ k 𝛻෨C + 𝑤𝑆𝑑Ω = 0.

ሚ𝐶 𝑥 =෍

𝑗

𝑁𝑗𝐶𝑗 = 𝑁 ⋅ Ԧ𝐶

𝛻 ሚ𝐶 = Ԧ𝐶 ⋅ 𝛻𝑁= σ𝑗 𝐶𝑗𝛻𝑁𝑗



Exa 2: Steady state heat eqn -- summary 
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Domain 
Discretization

Boundary conditions

PDE in 
Strong Form

FEM Mesh

PDE in Weak 
Form

Shape 
Functions

Assemble 
Galerkin
System of 
Equations

Solve for 
Nodal Values

Post-process

𝛻 ⋅ k𝛻C − S = 0 on Ω

Ωׯ ො𝑛Ω ⋅ 𝑤 k𝛻 ෨C 𝑑Ω

∫w𝛻 ⋅ k𝛻෨C − wS 𝑑𝛺 = 0.

ො𝑛Ω ⋅ 𝑘 𝛻𝐶 = 0.

∫ 𝛻𝑤 ⋅ k𝛻෨C + 𝑤𝑆𝑑Ω = 0.
Ωׯ ො𝑛Ω ⋅ 𝑤k𝛻 ෨C 𝑑Ω = 0

−∫ 𝛻𝑤 ⋅ k𝛻 ෨C − 𝑤𝑆𝑑Ω = 0.

ሚ𝐶 𝑥 =෍

𝑗

𝑁𝑗𝐶𝑗 = 𝑁 ⋅ Ԧ𝐶

𝛻 ሚ𝐶 = Ԧ𝐶 ⋅ 𝛻𝑁= σ𝑗 𝐶𝑗𝛻𝑁𝑗

∫ k෍

𝑗

𝛻𝑁𝑖 ⋅ 𝛻𝑁𝑗 𝑑Ω 𝐶𝑗 = −∫𝑁𝑖𝑆𝑑Ω

𝑤 Ԧ𝑥 = 𝑁𝑖 for all 𝑖

𝐾 Ԧ𝐶 = Ԧ𝑆



Exa 3: 1D Diffusion
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Domain 
Discretization

Boundary conditions

PDE in 
Strong Form

FEM Mesh

PDE in Weak 
Form

Shape 
Functions

Assemble 
Galerkin
System of 
Equations

Solve for 
Nodal Values

Post-process

𝛻 ⋅ 2𝛻𝐶 = 𝑥2, 0 ≤ 𝑥 ≤ 1

Ωׯ ො𝑛Ω ⋅ 𝑤 ෨C 𝑑Ω

∫w𝛻 ⋅ 2𝛻෨C − w𝑥2𝑑𝛺 = 0.

𝐶 0 = 𝐶 1 = 0.

∫ 𝛻𝑤 ⋅ 2𝛻෨C + 𝑤𝑥2𝑑Ω = 0.
Ωׯ ො𝑛Ω ⋅ 𝑤 ෨C 𝑑Ω = 0

−∫ 𝛻𝑤 ⋅ 2𝛻 ෨C − 𝑤𝑥2𝑑Ω = 0.

ሚ𝐶 𝑥 =෍

𝑗

𝑁𝑗𝐶𝑗 = 𝑁 ⋅ Ԧ𝐶

𝛻 ሚ𝐶 = Ԧ𝐶 ⋅ 𝛻𝑁= σ𝑗 𝐶𝑗𝛻𝑁𝑗

∫ 2෍

𝑗

𝛻𝑁𝑖 ⋅ 𝛻𝑁𝑗 𝑑Ω 𝐶𝑗 = −∫𝑁𝑖𝑥
2𝑑Ω

𝑤 Ԧ𝑥 = 𝑁𝑖 for all 𝑖

𝐾 Ԧ𝐶 = Ԧ𝑆



Exa 3: 1D diffusion   𝑥1 = 0 𝑥2 = 0.5 𝑥3 = 0.75 𝑥4 = 1

 Solve ODE: 𝛻 ⋅ 2𝛻𝐶 = 𝑥2, 0 ≤ 𝑥 ≤ 1
𝐶 0 = 𝐶 1 = 0.

 Galerkin linear shape function gives



σ𝑗 ∫2𝛻𝑁1 ⋅ 𝛻𝑁𝑗 𝑑Ω1 𝐶𝑗 = −∫𝑁1𝑥
2𝑑Ω1

σ𝑗 ∫ 2𝛻𝑁2 ⋅ 𝛻𝑁𝑗 𝑑Ω1 𝐶𝑗 = −∫𝑁2𝑥
2𝑑Ω1 − ∫𝑁2𝑥

2𝑑Ω2

σ𝑗 ∫2𝛻𝑁3 ⋅ 𝛻𝑁𝑗 𝑑Ω1 𝐶𝑗 = −∫𝑁3𝑥
2𝑑Ω2 − ∫𝑁3𝑥

2𝑑Ω3

σ𝑗 ∫2𝛻𝑁4 ⋅ 𝛻𝑁𝑗 𝑑Ω1 𝐶𝑗 = −∫𝑁4𝑥
2𝑑Ω3



∫2𝛻𝑁1 ⋅ 𝛻𝑁1 𝑑Ω1 𝐶1 + ∫2𝛻𝑁1 ⋅ 𝛻𝑁2 𝑑Ω2 𝐶2 = −∫𝑁1𝑥
2𝑑Ω1

∫2𝛻𝑁2 ⋅ 𝛻𝑁1 𝑑Ω1 𝐶1 + ∫2𝛻𝑁2 ⋅ 𝛻𝑁2 𝑑Ω2 𝐶2 + ∫2𝛻𝑁2 ⋅ 𝛻𝑁3 𝑑Ω3 𝐶3 = −∫𝑁2𝑥
2𝑑Ω1 − ∫𝑁2𝑥

2𝑑Ω2

∫ 2𝛻𝑁3 ⋅ 𝛻𝑁2 𝑑Ω2 𝐶2 + ∫2𝛻𝑁3 ⋅ 𝛻𝑁3 𝑑Ω3 𝐶3 + ∫2𝛻𝑁3 ⋅ 𝛻𝑁4 𝑑Ω4 𝐶4 = −∫𝑁3𝑥
2𝑑Ω2 − ∫𝑁3𝑥

2𝑑Ω3

∫2𝛻𝑁4 ⋅ 𝛻𝑁3 𝑑Ω3 𝐶3 + ∫2𝛻𝑁4 ⋅ 𝛻𝑁4 𝑑Ω4 𝐶4 = −∫𝑁4𝑥
2𝑑Ω3
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∫ 2෍

𝑗

𝛻𝑁𝑖 ⋅ 𝛻𝑁𝑗 𝑑Ω 𝐶𝑗 = −∫𝑁𝑖𝑥
2𝑑Ω

4 −4 0 0
−4 12 −8 0
0 −8 16 −8
0 0 −8 8

𝐶1
𝐶2
𝐶3
𝐶4

=

0.0104
0.0742
0.1432
0.1055

𝐶1
𝐶2
𝐶3
𝐶4

=

0
0.01823
0.01806

0



Exa 4: Heat conduction equation
𝜕𝜌𝐶𝑇 Ԧ𝑟, 𝑡

𝜕𝑡
− 𝛻 ⋅ 𝑘 𝛻𝑇 Ԧ𝑟, 𝑡 = 𝑓 (Ԧ𝑟, 𝑡)

 Weak form: ∫Ω 𝑤
𝜕𝜌𝐶 ෨𝑇 Ԧ𝑟,𝑡

𝜕𝑡
− 𝛻 ⋅ 𝑘 𝛻 ෨𝑇 Ԧ𝑟, 𝑡 = 𝑓 (Ԧ𝑟, 𝑡) 𝑑Ω

 Galerkin FEM: ∫Ω 𝑁𝑖(Ԧ𝑟)
𝜕𝜌𝐶 ෨𝑇 Ԧ𝑟,𝑡

𝜕𝑡
− 𝛻 ⋅ 𝑘 𝛻 ෨𝑇 Ԧ𝑟, 𝑡 = 𝑓 (Ԧ𝑟, 𝑡) 𝑑Ω

න
Ω

𝑁𝑖(Ԧ𝑟)
𝜕𝜌𝐶 ෨𝑇 Ԧ𝑟, 𝑡

𝜕𝑡
− 𝛻 ⋅ 𝑘 𝛻 ෨𝑇 Ԧ𝑟, 𝑡 = 𝑓 (Ԧ𝑟, 𝑡) 𝑑Ω

 Assume ෨𝑇 Ԧ𝑟, 𝑡 = σ𝑗𝑁𝑗𝑇𝑗(𝑡) , we have the following system of ODEs:

22

෍

𝑗

𝜕𝑇𝑗(𝑡)

𝜕𝑡
𝜌𝐶 න

Ω

𝑁𝑖𝑁𝑗𝑑Ω +෍

𝑗

𝑇𝑗(𝑡)න
Ω

𝛻𝑁𝑖 ⋅ k𝛻𝑁𝑗 𝑑Ω = න

Ω

𝑁𝑖𝑓 Ԧ𝑟, 𝑡 𝑑Ω + ර
Ω

ො𝑛Ω ⋅ 𝑁𝑖𝑘෍

𝑗

𝛻𝑁𝑗 𝑇𝑗(𝑡) 𝑑Ω .

න

Ω

𝑁𝑖(Ԧ𝑟)
𝜕𝜌𝐶 ෨𝑇

𝜕𝑡
𝑑Ω −ර

Ω

ො𝑛Ω ⋅ 𝑁𝑖(Ԧ𝑟)𝑘𝛻 ෩T 𝑑Ω + ∫ 𝛻𝑁𝑖(Ԧ𝑟) ⋅ k𝛻෩T𝑑Ω = න

Ω

𝑁𝑖(Ԧ𝑟)𝑓 Ԧ𝑟, 𝑡 𝑑Ω

න

Ω

𝑁𝑖(Ԧ𝑟)
𝜕𝜌𝐶 ෨𝑇

𝜕𝑡
𝑑Ω + න

Ω

𝛻𝑁𝑖(Ԧ𝑟) ⋅ k𝛻෩T𝑑Ω = න

Ω

𝑁𝑖( Ԧ𝑟)𝑓 Ԧ𝑟, 𝑡 𝑑Ω + ර
Ω

ො𝑛Ω ⋅ 𝑁𝑖(Ԧ𝑟)𝑘𝛻 ෩T 𝑑Ω .

𝑐𝑖𝑗 𝑔𝑖𝑗 𝑏𝑖



Exa 4: Heat conduction equation
𝜕𝜌𝐶𝑇 Ԧ𝑟, 𝑡

𝜕𝑡
− 𝛻 ⋅ 𝑘 𝛻𝑇 Ԧ𝑟, 𝑡 = 𝑓 (Ԧ𝑟, 𝑡)

 Weak form: ∫Ω 𝑤
𝜕𝜌𝐶 ෨𝑇 Ԧ𝑟,𝑡

𝜕𝑡
− 𝛻 ⋅ 𝑘 𝛻 ෨𝑇 Ԧ𝑟, 𝑡 = 𝑓 (Ԧ𝑟, 𝑡) 𝑑Ω

 Assume ෨𝑇 Ԧ𝑟, 𝑡 = σ𝑗𝑁𝑗𝑇𝑗(𝑡) , we have the following system of ODEs:

 In matrix form: for all 𝑖,

෍

𝑗

𝑐𝑖𝑗
𝑑𝑇𝑗

𝑑𝑡
+෍

𝑗

𝑔𝑖𝑗𝑇𝑗 = 𝑏𝑖

• System of ODEs can be solved by any ODE solver, such as explicit 
finite difference, implicit finite difference, Backwards 
differentiation formula (BDF) method, Generalized alpha method, 
Different Runge-Kutta methods.
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𝑐𝑖𝑗 𝑔𝑖𝑗 𝑏𝑖

෍

𝑗

𝑑𝑇𝑗(𝑡)

𝑑𝑡
𝜌𝐶 න

Ω

𝑁𝑖𝑁𝑗𝑑Ω +෍

𝑗

𝑇𝑗(𝑡)න
Ω

𝛻𝑁𝑖 ⋅ k𝛻𝑁𝑗 𝑑Ω = න

Ω

𝑁𝑖𝑓 Ԧ𝑟, 𝑡 𝑑Ω + ර
Ω

ො𝑛Ω ⋅ 𝑁𝑖𝑘෍

𝑗

𝛻𝑁𝑗 𝑇𝑗(𝑡) 𝑑Ω .



What to know about FEM

 Solution is a linear combination of shape 
functions

 Mesh needs to match application

 More elements improves accuracy

 Higher order improves accuracy

 Solving system of equations takes most time

 More DOF = more work

 Solution shouldn’t depend on mesh

 Mesh isn’t real  try multiple meshes

 User judgement  doe results make sense?

 FEM is generally used for spatial discretization
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 Reference: 

 Andrew Prudil, Lecture Notes, Cybertraining
Workshop at Clarkson University. 

 Good read: 

 Comprehensive Introduction to Physics, PDEs, 
and Numerical Modeling (comsol.com)
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https://www.comsol.com/multiphysics/introduction-to-physics-pdes-and-numerical-modeling

