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Three fundamental PDEs and solution:

0 Heat equation (parabolic): Uy = Uy,

O

Solution: u = %xz +t

o Challenge: can you find another solution? u = e®*bt
o Fourier, 1800's
o Heat conduction
D Wave eq uation (hype rbOI iC) : utt: uxx \5/ibrati0n, e inastrin.g.The and the first

= d’Alembert, 1740’s, vibration of strings

o Laplace equation (elliptic): u,, +u,, =0
= Laplace, 1780’s,

= gravitation mechanical equilibrium,
= thermal equilibrium

u=u(x.t)

Laplace's equation on an annulus (inner radius » = 2 and
outer radius R = 4) with Dirichlet boundary conditions 2
w(r=2) =0 and u(R=4) = 4 sin(5 6)


https://en.wikipedia.org/wiki/Standing_wave
https://en.wikipedia.org/wiki/Fundamental_frequency
https://en.wikipedia.org/wiki/Overtone
https://en.wikipedia.org/wiki/Harmonic_series_(music)

Common but Challenging PDEs

o Diffusion equation

V=DVC+S=70
O Solid-Mechanics
V-(puu!)=-VP+V-1+pg

O Navier-Stokes
d(pu)
dt

o Schrodinger
h2
v [— o VW)] +UBPF) = Ep(F)

+l7-(pﬁ®l_i)+|7P=,u\72ﬁ+%l7(\7-1_i)+pg

0 Dynamics Electromagnetic wave equation

uedZE(#t)  podE(# t) . udj(# t)
—V2E(#t) = —
ot2 * ot &0 ot

0 Boltzmann transport equation

of € . (of
a+V'Vf+T°ka—<%>C




How to solve PDEs?
Analytlcally

Method of characteristic
« Separation of variables
« Fourier analysis----sin(x), cos(x), Bessel’s function,
Legendre, ..
« Eigenfunction expansion
 Problems:
« cannot deal with complicated geometry
« May not converge with finite terms
« Hard to deal with nonlinear

Numerically:
Finite difference method (FDM)
Finite element method (FEM)

Finite volume method
Reduce order method

Combination of analytical and numerical methods
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How to solve PDEs?

- Analytic solutions are possible for simple and special (idealized)
cases only.

« To make use of the nature of the equations, different methods are
used to solve different classes of PDEs.

« The methods discussed here are based on the finite element
technique.

« Methods other than FEM: FDM, Spectral Method, FVM, ...
I 4 e

* Finite Element Method (FEM)

How to solve PDEs using FEM?
Numerical interpolation: shape functions
Domain discretization: mesh
Weak and strong forms of PDE
Linear or nonlinear system solver



Summary of FEM Process

FEM Mesh: elements

T~

Domain
Discretization

Shape

\ Functions

Boundary
Conditions

PDE in
Strong Form

PDE in weak
forms

Assemble
Galerkin

system of
equations

Post-process

A 4

Solve for
Nodal
Values




Generalization of FEM

o Divide geometry into simple elements

o Finding polynomial approximation on each
element: unknow agy,aq,a,,:+,a,

= 1D: é(x) = a -|—a1x_|_a2x2 + ...
= 2D: 5(?6) =ay+ax +ay +azxy+ -
m3D: C(x)=ap+ax+a,y+azz+-

o Continuous across elements

o PDE —» System of equations — Solve nodal values
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Elements

o Divide geometry into simple elements
= Elements have nodes

@

= Elements include line segments in 1D
O O

= Elements include triangular or quadrilateral mesh

in 2D \/ j?

» Elements include tetrahedrons or hexahedrons in
3D




Elements

O Each element has its own coefficients:
m One for each node: ay,aq,a,,:+,a,

o Construct shape functions, meanwhile get
continuous piecewise polynomial between

elements:
Write solution Adjacent Automatically
in terms of — elements » continuous
values at nodes share nodes between elements

Element Element_Element Element
7\ @ 7\ O

N4 N4

Element




Construct shape functions in 1D

o Construct shape functions by writing solutions

in terms of functions’ values (; C,
Consider single element 5?1 ?cz

2 nodes in 1D: C(x) = a, +ax
Find a, and a, by solving
C; = C(xy) = ag +agx;
C, = C(xz) = ag +a;x,

al _ 1 x] ' [G]_ 1 [x —x1][Cy
e [5]- ¢ 2 ]85 1)

1 x5 C, x,—xq LI—1 1
That is:
Coy= R Ty
Clx) = Xy — X c, —x1+xC2

xz - x1 XZ - x1 . 10




Construct shape functions in 1D

o Construct shape functions by writing solutions in

terms of functions’ values Cy C,
= For a single element 5?1 9c2
~ X, — X —X1 t+ X
Cx)= =2——C, +——"¢,.

X2 — X1 X2 — X1

C(x) = Ny (x)C; + Ny (x)C,.
= Shape functions—AKA interpolation functions, basis
functions for the solution:

X
N1(x) =
X2 — Xq X2 — X1

m Solution is a linear combination of shape functions

2
C(x) = Ny(%)Cy + N,(x%)C, = 2 N;C;= N-C.

=1
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Exa 1: Interpolation

C(x) =sin(x),0<x <5

- Fement 2
04r [ CN{(x) + C,N,(x), 0<x<15
06 )= 4 GM@FGN®,  15<x<3
-0.8 LClNl(x) + C,N, (x),' 4875 <x <5
o 0.5 *|| 15 2 2.5 3 3.5 4

Approximation includes all spatial dependence: ((x) =

Depend on coordinates of nodes

N, =1 at node i, N; =0 at all other nodes
Zero outside their element

Linear Interpolation FEENICICIA
[ I
s N s I kI
’ N / \ / 1 Iy 1
/’ \ \ \ | I | T
< \ AR AT
\ Vg
N v
\Y;
/< N CH
’ ¢\ o
N VDo gy
N, oy
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Exa 1: Interpolation--higher order shape functions

o Order 1 Order 2 Order 3
Linear lagrange Quadratic line segment  Cubic line segment
C, C C C, C Ca C,
ce——S |88 | b—o—
2 nodes, 2 DOF 3 nodes, 3 DOF 4{700’6’5‘, 4DOF
C(x) = ay +a;x C(x) = ag +a;x + a,x? C(x) = ap +a;x + apx?* + azx®

C 13




Construct shape functions in 2D

o Construct shape functions by writing solutions
in terms of functions’ values o 10

Consider single element
3 nOdeS II"I ZD: C~(x, y) — ao +a1x -+ azy Node 2 (x,,7,) Node 3 (xs,3)
Find ay,a, and a, (3 degree of freedom DOF):
C; = Clxy,y1) = ap +asx; + azy;
C; = Clxz,¥2) = ap +asx; + azy;
C3 = C(x3,¥3) = ap +a;1x3 + ays
1 x 1]t G Co
[ ] [1 5 [cz H
1 x3 3 G2
Collect ¢4, C,, & C; to get shape functions:
CO) = Ny, )0y + Na(e, Y)Cy + N3 ()G = ) Ny = N+ C.

) X2Y3 —X3Y2 X3Y1-X1Y3 X1Y2 — X2)1

= Y2 —Y3 Y3—WM Yi— Y2
X2Y3tX1Y2+X3Y1—X2Y1—X3Y2—X1Y3 [ X3 — X X; — X3 Xy — Xq

I—l
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Summary of I

M Process

FEM Mesh

I

Domain

Shape

Discretization \ Functions
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Solve for

'Boundary
conditions
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System of
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A 4
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v_F=5P+5Q+aR
Ox ady Oz

Exa 2: Steady state heat egn e
: E vh=(3 3>
o Strong form of PDE: Diffusion eqn

a%c | 92

VkVC —S=0 on Q k(ﬁ+ﬁ)—5=0ifkisconstant ‘
= Step 1. Use C = C, now PDE with residual R
V-kFC—S=R on Q

= Step 2. Want weighted error
JwVZ-kVC—wSdR =0. Derivative twice

= Step 3. Use Cal III identity:
V(aE)=\7a-B+a|75 fora=w,5=kVC

JV-wkVC—Vw-kVC— wSdR =0. Weaker
. onstraint
= Step 4. Apply Divergence Theorem jopolitiel

fV-kafl:% fig - wkVCdQ
Q

m Step 5. Weak form of diffusion equatjon __ Derivative once
$, g - wkVCdQ— [Vw-kV C—wSdQ = 0. "




EXﬂ 2: B()uﬁdary COHdlthﬂ D(ﬂ+£§)—5=0ifuis constant

ax%z = 9y

o Assume a tank with no leaks, i.e. zero flux BC

0o Weak form without BC
§ fig-wkVCdQ—[Vw-kV C—wSdQ = 0.
o Weak form with no flux
[Vw -k VC+ wSdQ = 0. kf22o+ S48 wsd Q=0

o Other possible BCs:

Dirichlet, Neumann, Robin, Mixed, Cauchy

/N

Fixed values Flux/Natural
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Exa 2: Galerkin Finite-Element Method

o Galerkin: w(x) = N; for all i (all basis functions)

f\Pw -k VC + wSdQ = 0.

o Recall interpolation when given nodal values ¢:
fVNi-ky C;VN; + N;SdQ =0 | C(x) =ZNJ-C,- =N-C

j T~ | J
kaVNi-VdeQCj = —[N;saq | Ve =C-VN
L5 }\?J \ Y 1
In Matrix Form [k] S
[K]C =S

o Calculate integral as sum of integral of each element:
fdQ = f dQerement

18




Exa 2: Steady state heat eqn -- summary

FEM Mesh —
W(WOrali C"(x)zz‘NjCj:N.C
i Shape J
Domain = > =
i C=C-VN=),;CiVN;
Discretization \ Functions k¢ 2; GVN;
fig -k VC = 0. \

Boﬁndary conditions

$, g -wkVCdQ=0—___

V-kVC —S=0 on Q

[wV-kVC —wS dQ = 0.

PDE in
Strong Form

‘

Assemble
Galerkin
System of

[ Vw -kVC + wSdQ = 0.

~ [KIC=S
Solve for

Equations

4

PDE in Weak
Form

$, g - wkvCdQ —JVw kV C—wSdQ = 0.

"Nodal VaIue]

) szVNi-VdeQCj=—fNiSdQ /
j

/

Post-process
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= Linearsh/ag\efungtions
_,__‘ .ff O s ‘\\\x”,’
° PR

Exa 3: 1D Diftusion
0 N . VA

0 0.2 0.4 0.6 0.8 1

FEM Mesh

W(WOF a

i Shape
Domain ———
Discretization \ Functions < 2 GVN,

C(0)=Cc@1)=0. \

Boﬁndary conditions

- —
J

[Vvw-2VC + wx?dQ = 0.

§y Ao wCdQ=0 — oo ~ [KIC=S
Galerkin Solve for
V-20C=x%0<x<1 / System of "Nodal Values
[ WV« 2VC — wx2dQ = 0. cauations
PDE in | PDE in Weak |, IZE VN; - VN; dQ C; = —[ N;x%dQ
Strong Form Form J
¢, ig-w CdQ —J Vw2V C—wx?dQ = 0. /

Post-process
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0 Solve ODE: V- 2VC = x%,0 <

Exa 3: 1D diffusion

X1 = 0 Xy = 0.5 X3 = 0.75

X4:1

<1

C(0)=C(1) =0.

0 Galerkin linear shape functlon glves

Llnear shape functions

fZZ VNl . VN] d() C] = —f Nixzdﬂ \\\ I

>056+ ]

0 0.2

( Y (J2VN, -VN; dQy) C; = —[ Nyx?dQy "
. Yi(J2VN, -VN;dQ;) C; = = Npx2dQy — [ Npx?dQ,

Y;(J2VNs-VN; dQ;) C; = — [ Nax?dQ, — [ N3x?dQs

\ Yi([2VN, - VN;dQ,) C; = —[ Nyx?dQs

( (f2VNy - VNy dQy)Cy + (J 2VNy - VN, dQ,)Cp = —f Nyx2dQy

(f2VN, - VN, dQy)Cy + (f 2VN, - VN, dQ,)Co + (f 2VN, - VN3 dQ3)Cs = — [ Nox2dQy — [ Nox2dQ,
S (f2VN5 VN, dQ,)Cy + (f 2VN;3 - VN3 dQ3)Cs + (f 2VNg - VN, dQ,)Cy = — [ N3x?dQ, — [ Nyx2dQs

\ (f2VN, - VN3 dQ3)Cs + (f2VN, - VN, dQ,)Cy = — [ Nyx?dQ;

4 C1] [0.0104 Gy 0

—4 12 —8 HQ‘ loomz C2[ _10.01823

0 -8 Cs| ~ [0.1432 Cs| — [0.01806
0 0 —8 c,] 10.1055 Cs 0



Exa 4: Heat conduction equation

<6pCT('F, t)

™ —V-kVT(#t)=f (7, t)>

o Weak form: fﬂ w (apCaTt(F’t) —V-kVT@# ) =f (7 t)) dQ

o Galerkin FEM: [ N()(ap”(’””

—V-kVIF0) = f (7,0))do

j G )(apCTt(r D v okvido =f(f,t)>dﬂ
Q

9 CT _ _
j N;(7) p —jé A - N,V T dQ + [ VN;(7) - kVTdQ = j N, (D fF £)dQ
Q Q Q
cT _ _
fzvi(f) ’;—td9+jVNi(f)-kVTdQ=jNi(f)f(f,t)d9+7€ g - N;(P)kV T dQ.
Q
Q Q

o Assume T(7,t) = 2. N;T;(t), we have the following system of ODEs:

Z aTéEt) pCj NideQ +Z T](t)jﬂ VN; - kVNj dQ = f Nif(r_", t)dQ + ﬁ)‘ g - Nikz VN]- T}(t) do.

J \ Q I J \ I i] J ’
' v v .
Cij gij

b;




Exa 4: Heat conduction equation

0pCT (7, t)
Jdt

—V-kVT(#t)=f (7, t))

0 Weak form: [, w (2500 vk VTG, 0) = f (7,0)) dO

o Assume T(#t) = 2.;N;T;(t), we have the following system of ODEs:

4T, (¢

Z i )pCjNideQ+z Tj(t)f VNi-kwvde=fNif(F,t)dQ+j£ ﬁQ-Nikz VN, T,(t) dQ.
- - Q Q -
J J ]

dt
Q Q

\ J \ ’
Y \ Y J '
Cij gij b;

o In matrix form for all i,

Dt 2 -

System of ODEs can be solved by any ODE solver, such as explicit
finite difference, implicit finite difference, Backwards
differentiation formula (BDF) method, Generalized alpha method,
Different Runge-Kutta methods.
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What to know about FEM

O Solution is a linear combination of shape
functions

m Mesh needs to match application
= More elements improves accuracy
= Higher order improves accuracy

O Solving system of equations takes most time
= More DOF = more work

O Solution shouldn’t depend on mesh
= Mesh isn’t real = try multiple meshes
m User judgement - doe results make sense?

o FEM is generally used for spatial discretization

24




O Reference:

= Andrew Prudil, Lecture Notes, Cybertraining
Workshop at Clarkson University.

0 Good read:
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https://www.comsol.com/multiphysics/introduction-to-physics-pdes-and-numerical-modeling

