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How to solve PDEs using FDM? Discretize PDE by using FDM

Numerical differentiation
Domain discretization
PDE discretization
Linear or nonlinear system solver

« Approximate solutions to PDE at
discretized points in domain and
on boundary.

What are your choices? Note: Methods other than FDM
Explicit FEM, Spectral Method, FVM, ...
Implicit
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The Solution Methods for PDEs

o Analytic solutions are possible for simple and special (idealized)
cases only.

o To make use of the nature of the equations, different methods are
used to solve different classes of PDEs.

o The methods discussed here are based on the finite difference
technique.

o  With initial-value problem, solution is obtained by starting with
intial values along boundary of problem domain, and marking
toward in time step, generating successive rows in solution table

o Time-stepping procedure may be explicit or implicit depending on
whether formula for solution values at next time step involves
only past info

o Good accuracy may be obtained by taking sufficiently small step
size in time and space

o Time and space step sizes cannot always be chosen independently
of each other.
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Step 0: Numerical differentiation

Forward difference Backward difference Central difference
A A A
f(x) f(x) e TX)
slope
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f(xja1) — f(=;) , f(z;) — f(x1) _
flz)) = ="+ 0(h) f'(z;) = ; , f(z) ~ f(zjs1) — f(zj)

Central difference formula for 15t and 219 derivatives
f(x + Ax) — f(x — Ax)
2Ax

f(x + Ax) — 2f(x) + f(x — Ax)
(Ax)?

I'{x) =
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FDM: Step 1. Discretize the domain

o Divide the interval x into sub-intervals, each of width h or Ax

o Divide the interval t into sub-intervals, each of width k or At

o A grid of points is used for the finite difference solution
t

o T,,represents T(xi,t))

o Replace the derivatives by FDM




FDM Step 2. Discretize the PDE

Replace the derivatives by finite difference formulas:
: 92T
O CentralDifferenceFormula for oz at (x;, t)):
0°T (x;,t;) Ty ;= 2T+ Tivq;  Tioq; — 2T j + Tiyq
0x? (Ax)? h?

: aT
O ForwardDifference Formula for 5, at (xl-, tj):

OT(xi,t;) Tijyr =Ty Tijea — Ty
at At k




. Consider heat equation
Example: heat equation

Explicit Method

Up = C Ugpry- 0<x <1, £ 20
with initial and boundary conditions
w(0.2) = f(x). w(t.0) = o, w(t,1) = 3
- Step 1. Define spatial mesh points x; = iAx,i =0,1,---,n + 1, where Ax
= ﬁ and temporal mesh points t, = kAt for suitably chosen At

- Step 2. Let uf denote approximate solution at (t,,x;) , forward
difference in time and central difference in space leads discretized
heat equation:

k+1 k k k k
U; —ui_cui+1—2ui+ui_1 Filoe g e
cAt
k+1 _ . k k k. k : 1 e e e
U; = U; +(Ax)2 (ui+1_2ui +ui_1),l = 1,2,”',” k= o i
Stencil: pattern of
« BCs: uk=a,uk ,=p forallk Moalved o each
e ICs: u?=f(x;),i=1,2,-,n gives starting values level
1 l

« March numerical solution forward in time using this explicit scheme
« Local truncation error: 0((At) + (Ax)?),
1st order accurate in time, 2" order accurate in space

o Let 1= (Zi;,error can be magnified(unstable). Stable condition: 1

< % This means that k is much smaller than h. This makes it slow.
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Convergence and Stability of the Solution

o Convergence

The solutions converge means that the solution obtained using the
finite difference method approaches the true solution as the steps
Ax and At approach zero.

o Stability:
An algorithm is stable if the errors at each stage of the computation
are not magnified as the computation progresses: approximated

solution at any fixed time must remain bounded when At and Ax go
to zero.

O Accuracy:
Difference between u¥ and u( t, x;) cannot be too big
o Efficiency:
Minimize the computational time.
o Consistency:
local truncation error go to zero when At and Ax go to zero.
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Heat equation, cont. Implicit FDM

« Implicit method offers much greater stability, which implies
larger time steps than explicit method

« It requires more work per step b/c system of equations must be
solved at each step

« For heat equation in 1D, the linear system is tridiagonal, thus
the work and storage required are modest

« In higher dimensions, matrix of linear system does not have
much simple form, but it is still very sparse, with nonzeros in
regular pattern

« Lax Equivalence Theorem: For well-posed linear PDEs,
consistency and stability are necessary and sufficient for
convergence.




. Consider heat uati
Example: heat equation cereat equaten

Implicit Method

I\

xz <1, t

|\/
o

Up = C Upry- 0
with initial and boundary conditions
w(0. 2) = f(a). w(t.0) = o, w(t.1) = 3
- Step 1. Define spatial mesh points x; = iAx,i =0,1,---,n + 1, where Ax
= ﬁ and temporal mesh points t;, = kAt for suitably chosen At

- Step 2. Let uf denote approximate solution at (t,,x;) , backward
difference in time and central difference in space leads discretized
heat equation:

k+1 _ .k k+1 _ 9y k+1 _I_uk+1

U; Ui _ c Uity k1 T
At (Ax)2 ’ L e .

Au{{_:_ll (1 + 2/1)Uk+1 + Auk+1 = —ugc, [ = 1, 2’

’ v"-_l L L] L)

At
where 1 = —/—, i1 i i1
(Ax)2 Stencil: pattern of
I r
e BCs: ulg = Q, u,’§+1 = ﬁ for all k mesh points
. . . i lved h
« ICs: u) = f(x)),i =1,2,-,n gives starting values vl eae

« Solve the system of equation at each time step makes it implicit
scheme
« Local truncation error: 0(At) + (Ax)?,
1st order accurate in time, 2" order accurate in space
« Unconditionally stable.




Image blurring and deblurring using heat equation

Original image Blurred Deblurred
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Example: wave equation

@ Consider wave equation

Ut = Clgpnp. 0 <2 <1, t >

with initial and boundary conditions
w(0,2) = f(x), ug(0,2) = g(x)

u(t,0) = o, u(t,1) =7




Example: wave equation

@ With mesh points defined as before, using centered
difference formulas for both u¢ and u,, gives finite
difference scheme

it = 2uf T iy 2wty
(At)? (Az)? |
uf+1:2uf’ —|—c(§i> ( il — 2uk 4+ uf_ 1) =1,...
S
J . * .
EF—1 e . .



Wave equation

@ Using data at two levels in time requires additional storage

@ We also need «! and «! to get started, which can be
obtained from initial conditions

wd = f(xs). uj = flag) + (At)g(a;)

where latter uses forward difference approximation to initial
condition u4(0, z) = g(x)




Wave equation

@ Consider explicit finite difference scheme for wave
equation given previously

@ Characteristics of wave equation are straight lines in (¢, x)
plane along which either = + /ct or  — \/ct is constant

@ Domain of dependence for wave equation for given point is
triangle with apex at given point and with sides of slope

1/\/cand —-1/\/c




Wave equation

@ CFL condition implies step sizes must satisfy

Ar Ax

unstable stable




Time-independent problems: Laplace equations

@ We next consider time-independent, elliptic PDEs in two
space dimensions, such as Helmholiz equation

Upy + tyy + Au = f2,y)

@ |Important special cases

@ Poisson equation: A= 0
e Laplace equation: A=0and f =0

@ For simplicity, we will consider this equation on unit square

@ Numerous possibilities for boundary conditions specified
along each side of square

e Dirichlet: u is specified
o Neumann: u, or u, is specified
o Mixed: combinations of these are specified




Example: Laplace equation

@ Consider Laplace equation
Ugpy + Uyy =0

on unit square with boundary conditions shown below left

Y y
A 1 A 1
' ) L 3
L ] » [ ] [ ]
0 0 0 0
L ] » [ ] .
SEae » . =N

() 0

@ Define discrete mesh in domain, including boundaries, as
shown above right




Laplace equation, cont.

@ Interior grid points where we will compute approximate
solution are given by

(5. y;) = (ih, jh). i.j=1.....n
where inexamplen=2andh=1/(n+1)=1/3

@ Next we replace derivatives by centered difference
approximation at each interior mesh point to obtain finite

difference equation

Witl,j — 2Uij + Uj—1 N Ui 41 — 2U4 5 + g1 _0

h? h?
where w; ; is approximation to true solution w(x;. y;) for
i.j=1.....n,and represents one of given boundary

valuesifior jisOorn+1




Laplace equation, cont.

@ Simplifying and writing out resulting four equations
explicitly gives

duy g —upg —ugg —urp —ure =70
dug g —uy g —ugq — ugg — ugn =0
duyo —ugg —ugo —uyg — uy g =0

414{.2!2 — U9 — U392 — U1 — UPF = 0




Laplace equation, cont.

@ Writing previous equations in matrix form gives

4 -1 -1 0] 'u.1,1- 0
C-to4 0 =1 fue|  |0]
AT=1_1 0 4 1| fue| T 1] TP
i 0 -1 -1 4_ | U292 _1_

@ System of equations can be solved for unknowns u; ;
either by direct method based on factorization or by
iterative method, yielding solution

(1011 | ((0.125 |
U210 0.125
v wia|  10.375
199 | 10.375 ]




Laplace equation, cont.

@ In practical problem, mesh size h would be much smaller,
and resulting linear system would be much larger

@ Matrix would be very sparse, however, since each equation
would still involve only five variables, thereby saving
substantially on work and storage




Example

It is required to determine the steady state
temperature at all points of a heated sheet of
metal. The edges of the sheet are kept at a
constant temperature: 100, 50, 0, and 75
degrees.

100

/75

The sheet is divided
to 5X5 grids.
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Example ® Known
@® To be determined
T1’4 - 100 T2,4- - 100 T3’4 - 100
@ @ @
Ti3 T
T, . =175 23 T33 —
A § o o o @ [43=50
T, Ty T _
Toz =75@ P P o> ® Ty, =50
T1,1 T. T.
=75 @ ® e * e > ® .. =750
@ @ @
Ti0=0 T20=0 T30=0

28



First Equation

® Known

@® To be determined

T1’4 = 100 T2,4 = 100
® ®
T.
Tys = 75 y 1,3 T, 3
o 3% O
T1,2 T2,2
To,=75@ @ o

Tog + T4+ Tip+T23—4T13=0
75 + 100 + T1,2 + T2,3 - 4‘T1,3 == O
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Another Equation

® Known

@® To be determined

T1’4 == 100 T2,4- = 100 T3,4 = 100
@ ® ®
T
1,3 y T2’3 T3’3
O o3 O
T1 / ¥ 1Y,
e / e ®—

T3+ T34 +T33+ T2, =413 =0
T1,3 + 100 + T3,3 + T2,2 - 4‘T2,3 = O
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Solution: the Rest of the Equations

-1

/

[

\

75
0 \
50
75

50
175

100
150
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Finite difference methods

@ Finite difference methods for such problems proceed as
before

e Define discrete mesh of points within domain of equation

e Replace derivatives in PDE by finite difference
approximations

e Seek numerical solution at mesh points

@ Unlike time-dependent problems, solution is not produced
by marching forward step by step in time

@ Approximate solution is determined at all mesh points
simultaneously by solving single system of algebraic

equations




Stability

@ Unlike Method of Lines, where time step is chosen
automatically by ODE solver, user must choose time step

At in fully discrete method, taking into account both
accuracy and stability requirements

@ For example, fully discrete scheme for heat equation is
simply Euler's method applied to semidiscrete system of
ODEs for heat equation given previously

@ We saw that Jacobian matrix of semidiscrete system has
eigenvalues between —4¢/(Ax)? and 0, so stability region
for Euler's method requires time step to satisfy

(Ax)?

2¢

At <

Severe restriction on time step can make explicit methods
relatively inefficient




Remarks

The Explicit Method:
 One needs to select small k to ensure stability.

«  Computation per point is very simple but many points are needed.

The Implicit Method:
* Requires the solution of a Tridiagonal system.

« Stable (Larger At can be used).
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