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Finite Difference Method (FDM)

Questions: 

• How to solve PDEs using FDM?

• Numerical differentiation

• Domain discretization

• PDE discretization

• Linear or nonlinear system solver

• What are your choices?

• Explicit

• Implicit

• Crank Nicolson

Goal: 

• Discretize PDE by using FDM

• Approximate solutions to PDE at 
discretized points in domain and 
on boundary.

Note: Methods other than FDM
FEM, Spectral Method, FVM, …
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The Solution Methods for PDEs

 Analytic solutions are possible for simple and special (idealized) 
cases only.

 To make use of the nature of the equations, different methods are 
used to solve different classes of PDEs.

 The methods discussed here are based on the finite difference
technique.

 With initial-value problem, solution is obtained by starting with 
intial values along boundary of problem domain, and marking 
toward in time step, generating successive rows in solution table

 Time-stepping procedure may be explicit or implicit depending on 
whether formula for solution values at next time step involves 
only past info

 Good accuracy may be obtained by taking sufficiently small step 
size in time and space

 Time and space step sizes cannot always be chosen independently 
of each other. 



Step 0: Numerical differentiation
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FDM: Step 1. Discretize the domain

t

x

 Divide the interval 𝑥 into sub-intervals, each of width h or Δ𝑥

 Divide the interval 𝑡 into sub-intervals, each of width 𝑘 or Δ𝑡

 A grid of points is used for the finite difference solution

 𝑇𝑖, 𝑗
represents 𝑇(𝑥𝑖, 𝑡𝑗)

 Replace the derivatives by FDM
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FDM Step 2. Discretize the PDE

Replace the derivatives by finite difference formulas:

 CentralDifferenceFormula for
𝜕2𝑇

𝜕𝑥2
𝑎𝑡 (𝑥𝑖 , 𝑡𝑗):

𝜕2𝑇(𝑥𝑖 , 𝑡𝑗)

𝜕𝑥2
≈
𝑇𝑖−1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖+1,𝑗

(Δ𝑥)2
=

𝑇𝑖−1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖+1,𝑗

ℎ2

 ForwardDifference Formula for
𝜕𝑇

𝜕𝑡
𝑎𝑡 𝑥𝑖 , 𝑡𝑗 :

𝜕𝑇(𝑥𝑖 , 𝑡𝑗)

𝜕𝑡
≈
𝑇𝑖,𝑗+1 − 𝑇𝑖,𝑗

Δ𝑡
=
𝑇𝑖,𝑗+1 − 𝑇𝑖,𝑗

𝑘



Example: heat equation

Explicit Method 

• Step 1. Define spatial mesh points 𝑥𝑖 = 𝑖Δ𝑥, 𝑖 = 0, 1,⋯ , 𝑛 + 1, where Δ𝑥

=
1

𝑛+1
and temporal mesh points 𝑡𝑘 = 𝑘Δ𝑡 for suitably chosen Δ𝑡

• Step 2. Let 𝑢𝑖
𝑘 denote approximate solution at (𝑡𝑘 , 𝑥𝑖) , forward 

difference in time and central difference in space leads discretized 
heat equation:

𝑢𝑖
𝑘+1 − 𝑢𝑖

𝑘

Δ𝑡
= 𝑐

𝑢𝑖+1
𝑘 − 2𝑢𝑖

𝑘 + 𝑢𝑖−1
𝑘

Δ𝑥 2 ,

𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 +
𝑐Δ𝑡

Δ𝑥 2 (𝑢𝑖+1
𝑘 − 2𝑢𝑖

𝑘+𝑢𝑖−1
𝑘 ), 𝑖 = 1, 2,⋯ , 𝑛

• BCs: 𝑢0
𝑘 = 𝛼, 𝑢𝑛+1

𝑘 = 𝛽 for all 𝑘

• ICs: 𝑢𝑖
0 = 𝑓 𝑥𝑖 , 𝑖 = 1, 2,⋯ , 𝑛 gives starting values

• March numerical solution forward in time using this explicit scheme
• Local truncation error: 𝑂( Δ𝑡 + Δ𝑥 2),

1st order accurate in time, 2nd order accurate in space

• Let 𝜆 =
𝑐Δ𝑡

Δ𝑥 2 , error can be magnified(unstable). Stable condition: 𝜆

≤
1

2
. This means that 𝑘 is much smaller than ℎ. This makes it slow. 

Stencil: pattern of 
mesh points 
involved at each 
level
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Convergence and Stability of the Solution 

 Convergence

The solutions converge means that the solution obtained using the 
finite difference method approaches the true solution as the steps                 
Δ𝑥 and Δ𝑡 approach zero. 

 Stability:

An algorithm is stable if the errors at each stage of the computation 
are not magnified as the computation progresses: approximated 
solution at any fixed time must remain bounded when Δ𝑡 and Δ𝑥 go 
to zero. 

 Accuracy: 

Difference between 𝑢𝑖
𝑘 and 𝑢 𝑡𝑘 , 𝑥𝑖 cannot be too big

 Efficiency: 

Minimize the computational time. 

 Consistency: 

local truncation error go to zero when Δ𝑡 and Δ𝑥 go to zero.



Heat equation, cont. Implicit FDM

• Implicit method offers much greater stability, which implies 
larger time steps than explicit method

• It requires more work per step b/c system of equations must be 
solved at each step

• For heat equation in 1D, the linear system is tridiagonal, thus 
the work and storage required are modest

• In higher dimensions, matrix of linear system does not have 
much simple form, but it is still very sparse, with nonzeros in 
regular pattern

• Lax Equivalence Theorem: For well-posed linear PDEs, 
consistency and stability are necessary and sufficient for 
convergence. 



Example: heat equation

Implicit Method 

• Step 1. Define spatial mesh points 𝑥𝑖 = 𝑖Δ𝑥, 𝑖 = 0, 1,⋯ , 𝑛 + 1, where Δ𝑥

=
1

𝑛+1
and temporal mesh points 𝑡𝑘 = 𝑘Δ𝑡 for suitably chosen Δ𝑡

• Step 2. Let 𝑢𝑖
𝑘 denote approximate solution at (𝑡𝑘 , 𝑥𝑖) , backward

difference in time and central difference in space leads discretized 
heat equation:

𝑢𝑖
𝑘+1 − 𝑢𝑖

𝑘

Δ𝑡
= 𝑐

𝑢𝑖+1
𝑘+1 − 2𝑢𝑖

𝑘+1 + 𝑢𝑖−1
𝑘+1

Δ𝑥 2 ,

𝜆𝑢𝑖+1
𝑘+1 − (1 + 2𝜆)𝑢𝑖

𝑘+1 + 𝜆𝑢𝑖−1
𝑘+1 = −𝑢𝑖

𝑘 , 𝑖 = 1, 2,⋯ , 𝑛

where 𝜆 =
𝑐Δ𝑡

Δ𝑥 2.

• BCs: 𝑢0
𝑘 = 𝛼, 𝑢𝑛+1

𝑘 = 𝛽 for all 𝑘

• ICs: 𝑢𝑖
0 = 𝑓 𝑥𝑖 , 𝑖 = 1, 2,⋯ , 𝑛 gives starting values

• Solve the system of equation at each time step makes it implicit 
scheme

• Local truncation error: 𝑂 Δ𝑡 + Δ𝑥 2,
1st order accurate in time, 2nd order accurate in space

• Unconditionally stable. 

Stencil: pattern of 
mesh points 
involved at each 
level



Image blurring and deblurring using heat equation
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Example: wave equation



Example: wave equation



Wave equation



Wave equation



Wave equation



Time-independent problems: Laplace equations



Example: Laplace equation



Laplace equation, cont.



Laplace equation, cont.



Laplace equation, cont.



Laplace equation, cont.
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Example

It is required to determine the steady state 
temperature at all points of a heated sheet of 
metal. The edges of the sheet are kept at a 
constant temperature: 100, 50, 0, and 75 
degrees. 

50

100

75

The sheet is divided 
to 5X5 grids.
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Example

𝑇1,4 = 100 𝑇2,4 = 100 𝑇3,4 = 100

𝑇4,3 = 50

𝑇4,2 = 50

𝑇4,1 = 50

𝑇0,3 = 75

𝑇0,2 = 75

𝑇0,1 = 75

𝑇1,0 = 0 𝑇2,0 = 0 𝑇3,0 = 0

Known

To be determined

𝑇1,3

𝑇1,2

𝑇1,1

𝑇2,3

𝑇2,2

𝑇2,1

𝑇3,3

𝑇3,2

𝑇3,1
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First Equation

𝑇1,4 = 100 𝑇2,4 = 100

𝑇0,3 = 75

𝑇0,2 = 75

Known

To be determined

𝑇1,3

𝑇1,2

𝑇2,3

𝑇2,2

𝑇0,3 + 𝑇1,4 + 𝑇1,2 + 𝑇2,3 − 4𝑇1,3 = 0

75 + 100 + 𝑇1,2 + 𝑇2,3 − 4𝑇1,3 = 0
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Another Equation

𝑇1,4 = 100 𝑇2,4 = 100 𝑇3,4 = 100

Known

To be determined

𝑇1,3

𝑇1,2

𝑇2,3

𝑇2,2

𝑇3,3

𝑇3,2

𝑇1,3 + 𝑇2,4 + 𝑇3,3 + 𝑇2,2 − 4𝑇2,3 = 0

𝑇1,3 + 100 + 𝑇3,3 + 𝑇2,2 − 4𝑇2,3 = 0
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Solution: the Rest of the Equations

4 −1 0 −1
−1 4 −1 0 −1
0 −1 4 0 0 −1
−1 0 0 4 −1 0 −1

−1 0 −1 4 −1 0 −1
−1 0 −1 4 0 0 −1

−1 0 0 4 −1 0
−1 0 −1 4 −1

−1 0 −1 4

𝑇1,1
𝑇2,1
𝑇3,1
𝑇1,2
𝑇2,2
𝑇3,2
𝑇1,3
𝑇2,3
𝑇3,3

=

75
0
50
75
0
50
175
100
150



Finite difference methods



Stability

Severe restriction on time step can make explicit methods 
relatively inefficient
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Remarks

The Explicit Method:

• One needs to select small k to ensure stability.

• Computation per point is very simple but many points are needed. 

The Implicit Method:

• Requires the solution of a Tridiagonal system.

• Stable (Larger Δ𝑡 can be used). 


