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Finite Difference Method (FDM)

Questions: 

• How to solve PDEs using FDM?

• Numerical differentiation

• Domain discretization

• PDE discretization

• Linear or nonlinear system solver

• What are your choices?

• Explicit

• Implicit

• Crank Nicolson

Goal: 

• Discretize PDE by using FDM

• Approximate solutions to PDE at 
discretized points in domain and 
on boundary.

Note: Methods other than FDM
FEM, Spectral Method, FVM, …
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The Solution Methods for PDEs

 Analytic solutions are possible for simple and special (idealized) 
cases only.

 To make use of the nature of the equations, different methods are 
used to solve different classes of PDEs.

 The methods discussed here are based on the finite difference
technique.

 With initial-value problem, solution is obtained by starting with 
intial values along boundary of problem domain, and marking 
toward in time step, generating successive rows in solution table

 Time-stepping procedure may be explicit or implicit depending on 
whether formula for solution values at next time step involves 
only past info

 Good accuracy may be obtained by taking sufficiently small step 
size in time and space

 Time and space step sizes cannot always be chosen independently 
of each other. 



Step 0: Numerical differentiation
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FDM: Step 1. Discretize the domain

t

x

 Divide the interval 𝑥 into sub-intervals, each of width h or Δ𝑥

 Divide the interval 𝑡 into sub-intervals, each of width 𝑘 or Δ𝑡

 A grid of points is used for the finite difference solution

 𝑇𝑖, 𝑗
represents 𝑇(𝑥𝑖, 𝑡𝑗)

 Replace the derivatives by FDM
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FDM Step 2. Discretize the PDE

Replace the derivatives by finite difference formulas:

 CentralDifferenceFormula for
𝜕2𝑇

𝜕𝑥2
𝑎𝑡 (𝑥𝑖 , 𝑡𝑗):

𝜕2𝑇(𝑥𝑖 , 𝑡𝑗)

𝜕𝑥2
≈
𝑇𝑖−1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖+1,𝑗

(Δ𝑥)2
=

𝑇𝑖−1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖+1,𝑗

ℎ2

 ForwardDifference Formula for
𝜕𝑇

𝜕𝑡
𝑎𝑡 𝑥𝑖 , 𝑡𝑗 :

𝜕𝑇(𝑥𝑖 , 𝑡𝑗)

𝜕𝑡
≈
𝑇𝑖,𝑗+1 − 𝑇𝑖,𝑗

Δ𝑡
=
𝑇𝑖,𝑗+1 − 𝑇𝑖,𝑗

𝑘



Example: heat equation

Explicit Method 

• Step 1. Define spatial mesh points 𝑥𝑖 = 𝑖Δ𝑥, 𝑖 = 0, 1,⋯ , 𝑛 + 1, where Δ𝑥

=
1

𝑛+1
and temporal mesh points 𝑡𝑘 = 𝑘Δ𝑡 for suitably chosen Δ𝑡

• Step 2. Let 𝑢𝑖
𝑘 denote approximate solution at (𝑡𝑘 , 𝑥𝑖) , forward 

difference in time and central difference in space leads discretized 
heat equation:

𝑢𝑖
𝑘+1 − 𝑢𝑖

𝑘

Δ𝑡
= 𝑐

𝑢𝑖+1
𝑘 − 2𝑢𝑖

𝑘 + 𝑢𝑖−1
𝑘

Δ𝑥 2 ,

𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 +
𝑐Δ𝑡

Δ𝑥 2 (𝑢𝑖+1
𝑘 − 2𝑢𝑖

𝑘+𝑢𝑖−1
𝑘 ), 𝑖 = 1, 2,⋯ , 𝑛

• BCs: 𝑢0
𝑘 = 𝛼, 𝑢𝑛+1

𝑘 = 𝛽 for all 𝑘

• ICs: 𝑢𝑖
0 = 𝑓 𝑥𝑖 , 𝑖 = 1, 2,⋯ , 𝑛 gives starting values

• March numerical solution forward in time using this explicit scheme
• Local truncation error: 𝑂( Δ𝑡 + Δ𝑥 2),

1st order accurate in time, 2nd order accurate in space

• Let 𝜆 =
𝑐Δ𝑡

Δ𝑥 2 , error can be magnified(unstable). Stable condition: 𝜆

≤
1

2
. This means that 𝑘 is much smaller than ℎ. This makes it slow. 

Stencil: pattern of 
mesh points 
involved at each 
level
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Convergence and Stability of the Solution 

 Convergence

The solutions converge means that the solution obtained using the 
finite difference method approaches the true solution as the steps                 
Δ𝑥 and Δ𝑡 approach zero. 

 Stability:

An algorithm is stable if the errors at each stage of the computation 
are not magnified as the computation progresses: approximated 
solution at any fixed time must remain bounded when Δ𝑡 and Δ𝑥 go 
to zero. 

 Accuracy: 

Difference between 𝑢𝑖
𝑘 and 𝑢 𝑡𝑘 , 𝑥𝑖 cannot be too big

 Efficiency: 

Minimize the computational time. 

 Consistency: 

local truncation error go to zero when Δ𝑡 and Δ𝑥 go to zero.



Heat equation, cont. Implicit FDM

• Implicit method offers much greater stability, which implies 
larger time steps than explicit method

• It requires more work per step b/c system of equations must be 
solved at each step

• For heat equation in 1D, the linear system is tridiagonal, thus 
the work and storage required are modest

• In higher dimensions, matrix of linear system does not have 
much simple form, but it is still very sparse, with nonzeros in 
regular pattern

• Lax Equivalence Theorem: For well-posed linear PDEs, 
consistency and stability are necessary and sufficient for 
convergence. 



Example: heat equation

Implicit Method 

• Step 1. Define spatial mesh points 𝑥𝑖 = 𝑖Δ𝑥, 𝑖 = 0, 1,⋯ , 𝑛 + 1, where Δ𝑥

=
1

𝑛+1
and temporal mesh points 𝑡𝑘 = 𝑘Δ𝑡 for suitably chosen Δ𝑡

• Step 2. Let 𝑢𝑖
𝑘 denote approximate solution at (𝑡𝑘 , 𝑥𝑖) , backward

difference in time and central difference in space leads discretized 
heat equation:

𝑢𝑖
𝑘+1 − 𝑢𝑖

𝑘

Δ𝑡
= 𝑐

𝑢𝑖+1
𝑘+1 − 2𝑢𝑖

𝑘+1 + 𝑢𝑖−1
𝑘+1

Δ𝑥 2 ,

𝜆𝑢𝑖+1
𝑘+1 − (1 + 2𝜆)𝑢𝑖

𝑘+1 + 𝜆𝑢𝑖−1
𝑘+1 = −𝑢𝑖

𝑘 , 𝑖 = 1, 2,⋯ , 𝑛

where 𝜆 =
𝑐Δ𝑡

Δ𝑥 2.

• BCs: 𝑢0
𝑘 = 𝛼, 𝑢𝑛+1

𝑘 = 𝛽 for all 𝑘

• ICs: 𝑢𝑖
0 = 𝑓 𝑥𝑖 , 𝑖 = 1, 2,⋯ , 𝑛 gives starting values

• Solve the system of equation at each time step makes it implicit 
scheme

• Local truncation error: 𝑂 Δ𝑡 + Δ𝑥 2,
1st order accurate in time, 2nd order accurate in space

• Unconditionally stable. 

Stencil: pattern of 
mesh points 
involved at each 
level



Image blurring and deblurring using heat equation
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Example: wave equation



Example: wave equation



Wave equation



Wave equation



Wave equation



Time-independent problems: Laplace equations



Example: Laplace equation



Laplace equation, cont.



Laplace equation, cont.



Laplace equation, cont.



Laplace equation, cont.
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Example

It is required to determine the steady state 
temperature at all points of a heated sheet of 
metal. The edges of the sheet are kept at a 
constant temperature: 100, 50, 0, and 75 
degrees. 

50

100

75

The sheet is divided 
to 5X5 grids.
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Example

𝑇1,4 = 100 𝑇2,4 = 100 𝑇3,4 = 100

𝑇4,3 = 50

𝑇4,2 = 50

𝑇4,1 = 50

𝑇0,3 = 75

𝑇0,2 = 75

𝑇0,1 = 75

𝑇1,0 = 0 𝑇2,0 = 0 𝑇3,0 = 0

Known

To be determined

𝑇1,3

𝑇1,2

𝑇1,1

𝑇2,3

𝑇2,2

𝑇2,1

𝑇3,3

𝑇3,2

𝑇3,1
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First Equation

𝑇1,4 = 100 𝑇2,4 = 100

𝑇0,3 = 75

𝑇0,2 = 75

Known

To be determined

𝑇1,3

𝑇1,2

𝑇2,3

𝑇2,2

𝑇0,3 + 𝑇1,4 + 𝑇1,2 + 𝑇2,3 − 4𝑇1,3 = 0

75 + 100 + 𝑇1,2 + 𝑇2,3 − 4𝑇1,3 = 0
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Another Equation

𝑇1,4 = 100 𝑇2,4 = 100 𝑇3,4 = 100

Known

To be determined

𝑇1,3

𝑇1,2

𝑇2,3

𝑇2,2

𝑇3,3

𝑇3,2

𝑇1,3 + 𝑇2,4 + 𝑇3,3 + 𝑇2,2 − 4𝑇2,3 = 0

𝑇1,3 + 100 + 𝑇3,3 + 𝑇2,2 − 4𝑇2,3 = 0
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Solution: the Rest of the Equations

4 −1 0 −1
−1 4 −1 0 −1
0 −1 4 0 0 −1
−1 0 0 4 −1 0 −1

−1 0 −1 4 −1 0 −1
−1 0 −1 4 0 0 −1

−1 0 0 4 −1 0
−1 0 −1 4 −1

−1 0 −1 4

𝑇1,1
𝑇2,1
𝑇3,1
𝑇1,2
𝑇2,2
𝑇3,2
𝑇1,3
𝑇2,3
𝑇3,3

=

75
0
50
75
0
50
175
100
150



Finite difference methods



Stability

Severe restriction on time step can make explicit methods 
relatively inefficient
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Remarks

The Explicit Method:

• One needs to select small k to ensure stability.

• Computation per point is very simple but many points are needed. 

The Implicit Method:

• Requires the solution of a Tridiagonal system.

• Stable (Larger Δ𝑡 can be used). 


